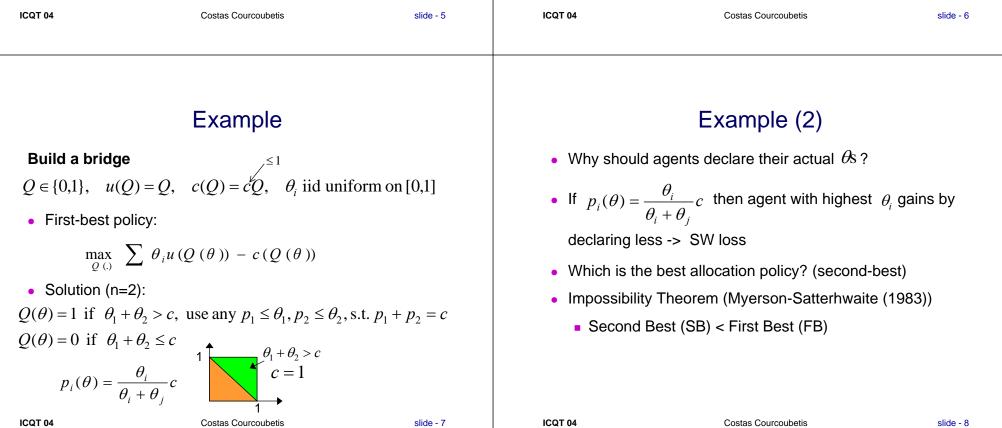
Contents Incentive Schemes for p2p Economics for incentives Public goods and p2p Incentive schemes for non-excludable public goods Using exclusions Applications **Costas Courcoubetis** The role of information in p2p AUEB File sharing joint research with Wireless hotspots **Richard Weber** Conclusions Panos Antoniadis supported partly by IST proj. MMAPPs ICQT 04 Costas Courcoubetis slide - 2 A non-excludable public good p2p and public goods • Public good: • *n* agents bargain to provision a public good non-rivalrous (one peer's consumption does not • *O* = quantity of public good, all agents enjoy it reduce the amount available to others) • c(Q) = cost of public good, agent i pays p_i positive externalities (a peer benefits from the presence of other peers because of cost sharing) $\theta_i u(Q) - p_i$ = agent's i net benefit p2p: content, coverage, connectivity have PG aspects • Major problem: free-riding • $heta_i$ iid, has distribution F• 0 Our goal: design optimal incentives for contribution • Examples: • $u(Q) = Q^{1/2}, \quad c(Q) = Q^2$ $Q \in \{0,1\}, \quad u(Q) = Q, \quad c(Q) = cQ$ ICQT 04 Costas Courcoubetis slide - 3 ICQT 04 Costas Courcoubetis slide - 4

Allocations


• For each $\theta = (\theta_1, ..., \theta_n)$ • what quantity Q(.) ? • what contributions $p_1(.), ..., p_n(.)$? • Feasible: $c(Q(\theta)) \leq \sum p_i(\theta)$ • incentive compatible: $E_{\theta_{-i}}[\theta_i u(Q(\theta_i, \theta_{-i}) - p_i(\theta_i, \theta_{-i})] \geq E_{\theta_{-i}}[\theta_i u(Q(\theta_i, \theta_{-i}) - p_i(\theta_i, \theta_{-i})]]$ • Individually rational: $E_{\theta_{-i}}[\theta_i u(Q(\theta_i, \theta_{-i}) - p_i(\theta_i, \theta_{-i})] \geq 0, \forall \theta_i$

Allocations (2)

• First-best: maximizes Social Welfare (SW) under complete information (is trivially feasible)

$$\max_{Q(i)} \sum_{\substack{Q(i) \\ Q}} \theta_i u(Q(\theta)) - c(Q(\theta))$$

=
$$\max_{Q} u(Q) \sum_{\substack{Q \\ Q}} \theta_i - c(Q)$$

- Second-best: maximizes SW under incomplete information, i.e.,
 - subject to
 - -feasibility
 - incentive compatibility
 - individual rationality

More on second best policies

• Problem:

 $\max_{Q(.), p_1(.), \dots, p_n(.)} E\left[\sum \theta_i u(Q(\theta)) - c(Q(\theta))\right]$

• subject to

ICQT 04

- feasibility $c(Q(\theta)) \leq E[\sum p_i(\theta)]$
- individual rationality $E_{\theta_{-i}}[\theta_i u(Q(\theta_i, \theta_{-i}) p_i(\theta_i, \theta_{-i})] \ge 0, \quad \forall \theta_i$
- incentive compatibility

A lemma for IC

- Let $V_i(\theta_i) = E_{\theta_{-i}}[u(Q(\theta_i, \theta_{-i}))], P_i(\theta_i) = E_{\theta_{-i}}[p_i(\theta_i, \theta_{-i})]$
- A necessary and sufficient condition for IC is

$$P_i(\theta_i) = P_i(0) + \theta_i V_i(\theta_i) + \int_{0}^{\theta_i} V_i(y) dy$$

• Given IC, the system is IR iff

 $P_i(0) \leq 0$

• Then
$$E_{\theta}[\sum_{i} p_{i}(\theta)] = E_{\theta}[\sum_{i} P_{i}(\theta_{i})]$$

= $E_{\theta}[\sum_{i}^{n} (\theta_{i} - \frac{1 - F(\theta_{i})}{f(\theta_{i})})u(Q(\theta))]$

ICQT 04

slide - 10

The SB problem

Costas Courcoubetis

• Solve $\max_{Q(i)} E_{\theta} \left[\sum_{1}^{n} \theta_{i} u(Q(\theta)) - c(Q(\theta)) \right]$

• subject to

$$E_{\theta}\left[\sum_{1}^{n} \left(\theta_{i} - \frac{1 - F(\theta_{i})}{f(\theta_{i})}\right)u(Q(\theta)) - c(Q(\theta))\right] \geq 0$$

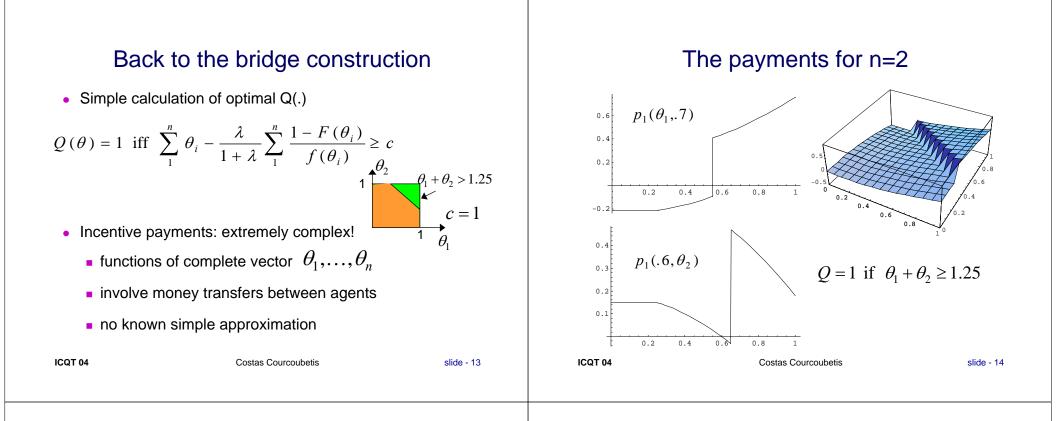
The Lagrangian

Costas Courcoubetis

• A Lagrangian formulation

$$\int \left[\sum_{1}^{n} \theta_{i} u(Q(\theta)) - c(Q(\theta))\right] dP_{n} \qquad g(\theta)$$

+ $\lambda \int \left[\sum_{1}^{n} (\theta_{i} - \frac{1 - F(\theta_{i})}{f(\theta_{i})})u(Q(\theta)) - c(Q(\theta))\right] dP_{n}$


• Calculation of Q(.): point wise maximization

$$Q(\theta) = \arg \max_{Q} \left[\sum_{i=1}^{n} \theta_{i} u(Q) - c(Q) + \lambda \left(\sum_{i=1}^{n} g(\theta_{i}) u(Q) - c(Q) \right) \right]$$

slide - 9

ICQT 04

Costas Courcoubetis

Some remarks

- Optimal incentive policies are impractical to evaluate in most situations
 - Need for good approximations
- Existing results for specific models suggest that as $n \rightarrow \infty$

$$\frac{SB}{FB} \to 0$$

• If exclusions are possible, then

$$\frac{SB}{FB} \to \alpha > 0$$

- Incentive payments converge to fixed contributions
- can we obtain a general theorem?

ICQT 04

Costas Courcoubetis

slide - 15

Exclusions

• Part of the allocation policy is the exclusion capability

Agent i is excluded if $\pi_i(\theta_1,...,\theta_n) = 0$

Agent i participates if $\pi_i(\theta_1,\ldots,\theta_n) = 1$

Second-Best policy: solve

$$\max_{Q(.), \pi_1(.), \dots, \pi_n(.)} E\left[\sum_{1}^{n} \theta_i \pi_i(\theta) u(Q(\theta)) - c(Q(\theta))\right]$$

such that

$$E_{\theta}\left[\sum_{1}^{n} \pi_{i}(\theta) g(\theta_{i}) u(Q(\theta)) - c(Q(\theta))\right] \geq 0$$

ICQT 04

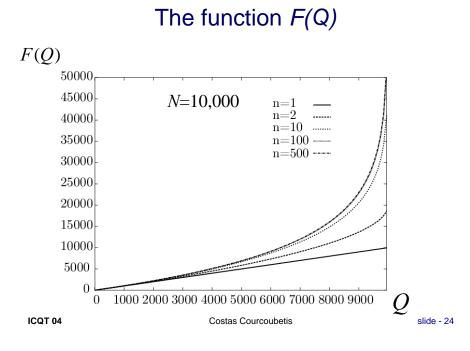
Costas Courcoubetis

A limit theorem

~

ICQT 04

Why large systems are simpler

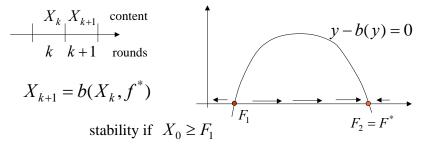

The role of information Applications Problem: optimal design requires information on user types • File Sharing under full info: personalized price/rule for each peer public good = content availability "first-best" policy that is, number of total distinct files shared Existing approaches based on heuristics P2P WLANs - reciprocity based punishments/rewards peers share wireless access to the internet How can the system/planner/network manager get the required information to design optimal contribution rules? public good = coverage if lucky, can gather personalized data about users otherwise, users must be given incentives to reveal relevant information to planner Mechanism Design: set prices/rules to encourage users to act truthfully, maximize social welfare for large n, use simple rules! ICQT 04 Costas Courcoubetis slide - 21 ICQT 04 Costas Courcoubetis slide - 22

File sharing

- Q : expected number of distinct files
- peer i :
 - utility = $\theta_i u(Q)$,
 - cost = f_i = number of files provided to the system
 - f_i randomly chosen from N files
- Rewrite equations in terms of F

$$Q(F) \approx N(1 - e^{-F/N})$$
, where $F = \sum f$

Compute optimum fixed contributions as before



ICQT 04

slide - 23

Stability

- Assume contribution f^* fixed
- Participation decision: based on prior expectation regarding total content availability F
- Will F^* be reached?

ICQT 04

Costas Courcoubetis

Group formation (1/3)

- Assume peers of different sub-types
- Type A: $\theta_i^A \sim [0,0.5]$ (e.g. ISDN users)
- Type B: $\theta_i^B \sim [0.5,1]$ (e.g. DSL users)
- Do they gain more by
 - forming 2 distinct groups vs
 forming a larger group?
 - being distinguished by the system in the larger group?

ICQT 04	Costas Courcoubetis

Group formation (2/3)

• Group A: $\theta_i^A \sim [0,0.5]$ (e.g. ISDN users) • Group B: $\theta_i^B \sim [0.5,1]$ (e.g. DSL users)

Assume that the percentage of each group in the mix is 50% (n=1000)

Welfare	Group A	Group B	Total
Distinct groups	3296	35156	38452
Indistinguishable	6976 (+ 111%)	44792 (+ 27%)	51768
Distinguishable	31249 (+ 848%)	31250 (-11%)	62500

Group formation (3/3)

- How to provide better incentives for both types to combine and reveal their types?
 - reduce cost of heavy users by limiting upload rates
 - reduce fees of heavy users
- Offer sets of tariffs (versioning)
 - allow self-selection
- Model difference in cost for uploading
 - higher-cost peers benefit in a larger group when types can be distinguished

slide - 25

ICQT 04

B

slide - 26

A+B

WLANs

- L geographic areas
 - coverage: fraction of area covered by hotspots
 - area *l* has coverage Q_l
- Peer i of area I
 - obtains benefit $\theta_i^l u^l(Q_1, \dots, Q_L)$
 - contributes payment (coverage) f_i^l
- Feasibility: $Q_l \leq \sum_{i=1,n_l} f_i^l$, for all areas l
- Problem: find optimum incentive scheme, maximize efficiency
- Our Theorem holds
 - use fixed contribution schemes

```
ICQT 04
```

1 2 Q _l	
area l	area k

Conclusions

- In p2p systems with strong PG aspects
 - Fixed contribution schemes can be efficient
 - Result to tractable optimization problems
 - Provide useful insight to many interesting questions
 - Information regarding user types may be strategic
- Open issues:
 - more complex cost structures
 - adaptation
 - multiple round games
 - use existing data to tune economic model

L .	Costas Courcoubetis	slide - 29	ICQT 04	Costas Courcoubetis	slide - 30