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Abstract 

 
To assess the trustworthiness of the information 

published in the World Wide Web referrals are often 
employed. This is due to the fact that most information 
sources are visited only occasionally by the same 
client, and thus, direct own experience rarely suffices. 
The accuracy of trust inference for unknown 
information sources may considerably deteriorate due 
to “noise” or to the intervention of malicious nodes 
producing and propagating untrustworthy referrals. In 
this paper, we describe an innovative approach for 
trust inference in the Semantic Web and in trust 
networks in general, referred to as FACiLE (Faith 
Assessment Combining Last Edges). Unlike all other 
approaches, FACilE infers a trust value for an 
information source from a proper combination of only 
the direct trust values of its neighbours. We evaluate 
the efficiency of our approach by means of a series of 
simulation experiments run for a wide variety of mixes 
of sources of untrustworthy information. FACiLE 
outperforms other trust-inference approach in the most 
interesting cases of population mixes. 
 
1. Introduction 
 

Nowadays an enormous volume of information of 
all kinds is published in the World Wide Web and 
accessed by users thereby. The freedom of publishing, 
the relative anonymity and the absence of any 
validation authorities raise important issues regarding 
trustworthiness of information. Indeed, the W3C 
Semantic Web activity has already identified the need 
for a trust layer in the stack of the Semantic Web [1]. 

In general, trust can be interpreted as the subjective 
probability, based on direct experience and prior or 

communicated belief, that a source publishes accurate 
information. Direct own (i.e. personal) experience is 
the most dependable means of inferring the 
trustworthiness of a source. However, since most 
information sources are visited very rarely by the same 
client, direct experience usually does not suffice. Thus, 
referrals are used for estimating the trustworthiness of 
occasionally visited sources. In the World Wide Web 
both means can be useful for trust assessment: a) direct 
trust based on direct own experience for sites that are 
often visited, and b) inferred trust based on referrals 
for occasionally visited sites. The effectiveness of the 
latter depends on the accuracy of referrals and the 
method of trust inference, i.e. estimation and 
propagation of trust. 

Lately, there has been carried out considerable 
research on trust modelling and inference in the 
Semantic Web and in other contexts (ad hoc networks, 
peer-to-peer systems, etc.) The proposed approaches 
are generally classified into four categories: 
1. Approaches based on a simple aggregation 

function; e.g. sum of positive/negative ratings [2].  
2. Approaches based on linear algebra in the context 

of a Markovian model; trust inference is based on 
a probabilistic interpretation of the transition from 
host to host [3], [4], [5]. 

3. Approaches based on Path Algebra; the trust 
network is modelled as a directed-weighted graph; 
the weight of each edge connecting two nodes 
equals the value of the direct trust, while end-to-
end trust of some path is inferred by calculating 
the weight of the path [6], [7], [8], [9]. 

4. Other specialized approaches; e.g. those involving 
multi-dimensional trust metrics [10], [11]. 

 An important common characteristic of many of 
these approaches [6], [7], [4], [5], [3] is that trust is 
inferred on an end-to-end basis: That is, the calculation 



 

of trustworthiness of the target-node by a requesting 
node incorporates the trust values of the intervening 
nodes. Thus, trust values may be seriously distorted 
along the way, especially if paths are not short and 
untrustworthiness and/or “noise” (e.g. due to 
subjectivity or malicious behaviour) are present in the 
system. As argued in [9], the longer the distance from 
the information source the more the uncertainty about 
trust and the worse the distortion that arises despite the 
small-world properties of the Web [12] (namely, high 
clustering but short average distance between two 
nodes). Even if a single node in the path is very 
“noisy”, trust information can be completely distorted. 

 Since inferred trust is, in general, considerably less 
informative than the direct one, it should be employed 
in an efficient way so as to result in high overall 
accuracy and speed of trust assessment. In this paper, 
we propose an approach referred to as FACiLE (Faith 
Assessment Combining Last Edges) that significantly 
improves the accuracy of trust inference avoiding 
considerably the distortion described above. The 
underlying idea is as follows: in order to make a trust 
assessment over an unknown entity, simply ask its 
neighbours and adopt their assessment in a way that is 
based on their own relative inferred trust values. The 
approach is motivated from social networks [12], 
where every person knows her neighbours (i.e., 
persons with whom she socializes more frequently) 
better than anyone else. In the Semantic Web, a 
neighbour of a certain client can be defined as a source 
of information frequently visited by this client, while a 
transaction is the transfer of some information, which 
may be: a) a piece of content directly provided by a 
node, on the trustworthiness of which each 
neighbouring node has a certain belief from direct 
experience with this source node, or b) a trust value for 
another node. All nodes in the Semantic Web are 
information sources. Thus, both trust and belief 
measure the trustworthiness of information, and are not 
distinguished hereafter. 

Our approach is based on Path Algebra yet in an 
innovative way: Trust is inferred for the neighbouring 
nodes of the target-node yet aiming at comparative 
(rather than absolute) evaluation of their 
trustworthiness. Thus, we introduce an innovative last 
step, referred to as combination. In this step, trust to 
the target node is deduced, either (i) by adopting the 
direct trust to the target node of its neighbour that is 
inferred by the requesting node as the most 
trustworthy, or (ii) by employing the weighted average 
of the direct trust values to the target node of all its 
neighbours, with weights proportional to the respective 
trust value of each of them as inferred by the 

requesting node. In [8], it was shown that it is 
preferable to rely on the referrals of friends  (i.e., 
nodes for which there exist direct own trust values) 
rather than on those of the distant node’s neighbours. 
Thus, just employing the referrals of the neighbouring 
nodes does not suffice for accurate trust inference 
without employing the neighbours’ inferred trust, as 
opposed to our approach. Finally, our approach does 
not require the presence of pre-trusted nodes, as 
opposed to [5] and [9].  
 
2. End-to-End and FACiLE 
 
2.1. End-to-End approaches 
 

Under the trust inference approaches based on Path 
Algebra, the trust network is represented by a directed 
weighted graph. We assume that each node of the 
graph corresponds to a web site, or to a subset of the 
content published therein for which a client can make a 
unified trust assessment (e.g. the sports news of a 
certain portal). Each directed edge has a weight 
ranging from 0 (total distrust) to 1 (full trust). This 
represents a trust value assigned by the node that 
requests information to the node that provides it, based 
on the direct experience of the former. When a node 
cannot assess the trustworthiness of another, then the 
corresponding edge is missing from the graph. Thus, 
distrust is distinguished from unawareness of trust. As 
already mentioned, trust for distant sources of 
information is inferred “end-to-end” in most of the 
proposed approaches. For instance, when node q needs 
to assess the trustworthiness of a certain statement or 
content published by another node s in the Semantic 
Web, the following steps are undertaken: First, q 
identifies nodes (e.g. by means of flooding with 
limited hop count) having formed a direct trust-value 
for s; i.e. nodes ni with some edge ni Æ s terminating 
to s. Then, for every ni, node q calculates the inferred 

trust of s via ni, that is the weight inqt , of a path: q Æ 
… Æ ni Æ s. This calculation involves [4], [7]: 
1. The concatenation of the trust weights of the 

successive edges of each path by means of an 
operation; usually multiplication, harmonic mean, 
max or min.  

2. The aggregation of alternative paths by means of 
an operation; usually addition, average, or max. 

 
2.2 The FACiLE approach 
 

As already explained, the inferred trust is a much 
weaker means than the direct trust to assess the 



 

trustworthiness an information source. Ideally, only 
direct trust should be used in trust assessment. This is 
accomplished under our approach as follows: For 
assessing the trust of an unknown information source, 
one should ask its neighbours and adopt either the 
opinion of the most trustworthy of them or use the 
weighted average of all the direct trusts of the source’s 
neighbours, with the weights being equal to their 
respective trustworthiness, which is inferred using Path 
Algebra. That is, we use the path-inferred trust values 
only as a relative measure of trustworthiness of the 
neighbours of the target entity. Thus, when some node 
q has to assess the trustworthiness of a statement of 
content s placed in the Semantic Web, the following 
steps are first undertaken:  
1. Find and ask the nodes that have a direct trust on 

the source s, i.e. nodes ni with some edge ni Æ s 
terminating to s.  

2. Calculate the inferred trust for every ni, as the 

weight inqt ,  of the path q Æ …  Æ ni.  
We take that the inferred trust values to the 

neighbouring nodes of the information source is 
calculated according to Path Algebra approaches as 
those described in Subsection 2.1, although other 
approaches could be employed as well, e.g. max-flow. 
In particular, we employ the following alternatives for 
concatenation operations: 
• Multiplication, henceforth denoted as MULTI, 

which is motivated as follows: if each edge-weight 
expresses the probability of a successful 
transaction, then the total probability of successful 
transaction over a path of two consequent edges 
equal their product [4], [7]. 

• The harmonic mean, to be denoted as HARM. 
This is motivated by viewing trust edges as 
electrical conductors [7]; recall that the 
conductivity of two serially connected conductors 
equals the harmonic mean of their conductivities.  

• A hybrid of the above two operations, to be 
denoted as HYBRID. Its outcome equals the 
harmonic mean of the two weights unless the 
denominator exceeds 1; in this case, HYBRID 
gives the product of the two weights. Thus, for 
trustworthy nodes, the inferred trust does not 
diminish along the path, as the harmonic mean 
does because of the denominator’s increase. 

For aggregation we always employ the maximum 
operation due to its effectiveness for trust inference, as 
shown in [4]. Also, due to this choice, we can 
implement the trust inference to the neighbouring 
nodes of the information source using a generalized 
version of the Bellman-Ford algorithm. This is 

presented in Figure 1; E*(G) contains the permissible 
edges from each node (according to some selection 
policy) and t[v] denotes the inferred trust for node v. 
Also, note that the results of the Bellman Ford 
algorithm could be cached for some time, thus further 
reducing computational and communication overhead.  

for step=1 to |V(G)| - 1 
    for each edge (u, v) ∈ E*(G) 
       t[v] ← ⊕ [ t[v], t[u] ⊗ tu, v ] 

where ⊕ : aggregation and ⊗ : concatenation 
Figure 1: Generalized Bellman-Ford algorithm 

So far, we have explained how we compute the 
inferred trust of every issuer ni of a direct trust-value 
for the information source s. Next, we employ the 
inferred trust of every ni in order to combine their 
respective personal trusts and obtain a trustworthiness 
measure for s. This innovative step, referred to as 
combination, is implemented by means of either:  
• the maximum operation, to be denoted as Max,  

thus adopting the most trustworthy personal direct 
trust, or  

• the weighted average, to be denoted as WeiAvg, 
thus averaging the various direct trusts for s, each 
weighted by the trustworthiness of its issuer.  

Note that the personal trust estimation of a 
neighbour ni of s is only taken into account when the 
inferred trust to ni is above a certain threshold, thus 
ignoring  untrustworthy  neighbours.  
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Figure 2: Example of a trust-graph 

Next, we illustrate the effectiveness of our approach 
by means of a simple example. Consider the trust 
graph of Figure 2. Node q is interested in the content 
of site s and has to assess its trustworthiness. We use 
MULTI as concatenation operation and Max for 
aggregation. Since tq,b = 0.2, b mostly provides 
untrustworthy referrals. On the other hand, d appears 
to be considerably more trustworthy. The inferred trust 
for s will be tq,s = td,s = 0.6 (using Max in combination 
too). Had we applied end-to-end concatenation and 
aggregation, then the inferred trust for s would be tq,s = 
max{tq,c × tc,d × td,s, tq,b × tb,s} = 0.336, which is actually 
almost half the trustworthiness assigned directly to s 
by d! Moreover, if both b and d were untrustworthy, 
then their trust values as inferred by FACiLE would be 
very low (i.e. below trust threshold). Thus, s would be 



 

considered distrusted and could not be maliciously 
promoted by b and d. 
 
3. Experimental Evaluation 
 
3.1 The Simulation Model 
 

In this section, we experimentally evaluate the 
accuracy of our approach for trust inference in 
comparison with end-to-end approaches. To simulate a 
part of the Semantic Web, we used a 100-node power-
law directed weighted trust graph with some shortcuts 
to preserve small world properties [12] to a certain 
extent. Each node represents a source of information; 
the weight of each edge equals the respective direct 
trust value, which is continuously updated (see below). 
Nodes are classified in 3 types (namely “Good”, 
“Bad”, and “Ugly”). Associated with each type are: a) 
the probability of offering trustworthy content in a 
transaction, which is depicted with vertical bold arrows 
and the associated numbers in Figure 3, b) their 
behaviour regarding the accuracy of trust values they 
provide to others. Regarding the behaviour of nodes in 
offering content, we have considered two models 
already employed in the literature; namely a model 
with Ideal-world characters [6] and one with Real-
world characters [4] in order to assess the effectiveness 
of our approach without and with “noise” respectively. 
In particular, in the Ideal-world model, “Bad” nodes 
always offer untrustworthy content, while in the Real-
world model they do so with probability 0.9. “Good” 
nodes always offer trustworthy content in the Ideal-
world model, while they do so with probability 0.9 in 
the Real-world model. “Ugly” nodes offer trustworthy 
content with probability 0.5 in both models. On the 
other hand, the behaviour of the nodes on reporting 
trust values is under both models as follows: “Bad” 
nodes exhibit a malicious behaviour, always reporting 
random trust values. “Ugly” nodes do so only with 
probability 0.5, while otherwise they report true trust 
values, thus exhibiting a dynamic behaviour. Finally, 
“Good” nodes always report true trust values. No pre-
trusted nodes are assumed to exist. The allocation of 
reporting types of the nodes is determined randomly at 
the beginning of each experiment, yet for a 
predetermined population mix.  

The scenario of each of the experiments is as 
follows: We simulate a network where various 
transactions are taking place among nodes. Without 
loss of generality we assume that a different user is 
attached at each of the nodes of the network. 90% of 
her transactions are done with randomly chosen 

neighbouring nodes and the remaining 10% with 
randomly chosen distant nodes. This justifies our 
consideration of a node’s neighbour (resp. distant 
node) as one that is frequently (resp. infrequently) 
visited by the former node. Each transaction is 
classified as successful or not depending on the type of 
the visited node. Direct trust of a neighbouring node is 
calculated and constantly updated as the ratio of 
successful transactions over the total number of 
transactions with it. Using the various approaches for 
trust inference and running the algorithm of Figure 1, 
we estimate the trust for a distant visited node s after 
each transaction. Based on this, we classify node s as 
“Good”, “Bad”, or “Ugly” according to the intervals 
shown in Figure 3 for the Ideal- and the Real-world 
models. For example, under the Real-world model, if 
the estimated trust value for a distant node after a 
transaction is 0.85, then the distant node is categorized 
as “Good”. If the type of the visited node is guessed 
correctly then we count a hit. The hit ratio, i.e. the 
number of hits over the number of estimations, is the 
metric used in order to assess the effectiveness of the 
various approaches. Note also that neighbours of the 
distant node s with inferred trust less than 0.1 are 
ignored in the combination step. If this applies to all 
neighbours of s, then we count a miss. We have 
considered in the experimental analysis all cases of 
population mixes (i.e. relative fractions of node types).   

  
Figure 3. Node types and identification criteria 

In the beginning, a node knows nothing (i.e. “cold 
start”) about the type of each of its neighbours and 
nothing more about the rest of the graph. However, 
due to the high frequency of the local transactions, 
every node gets to know its neighbours’ types, even if 
the latter were dynamically changed with some rate. 
Regarding distant nodes, no information concerning 
their quality is being stored except in the final 
experiments, where we study the effectiveness of 
combining it with inferred trust. 
 



 

3.2. The Results 
 

In this subsection, we investigate the most suitable 
pair of concatenation, and combination operators and 
the influence of the fractions of “Bad” and “Ugly” 
nodes to the accuracy of trust inference. Recall that 
aggregation is always performed by means of 
maximization. First, we compare the concatenation 
operations considered (i.e., “MULTI”, “HARM” and 
“HYBRID”) in terms of accuracy assuming the Ideal-
world model in the graph. As depicted in Figure 4, 
MULTI and HYBRID are equivalent in terms of hit 
ratio, ending finally at hit ratio 1, while they both 
outperform HARM. In fact, HARM degrades as the 
percentage of “Good” nodes increases, because as 
already explained it is not well-suited for inferring 
trust in networks with highly trusted nodes. Note that 
all concatenation operators achieve high hit ratios for 
high fractions of “Bad” nodes. This can be explained 
as follows: Every node recognizes correctly the type of 
its neighbours and, since most of them are “Bad”, it 
assigns to them and subsequently to the distant node 
(due to multiplication) a trust value of 0, which is very 
likely to be correct! Also, MULTI is the highest 
performing concatenation function for the end-to-end 
approaches in the case of the Real-world model. Thus, 
only MULTI is henceforth used in concatenation for 
both the end-to-end approaches and FACiLE. 

Figure 4. Identification for various 
concatenation operations (Ideal-world model) 

Next, we compare the proposed FACiLE approach 
with the most accurate end-to-end one (denoted as 
e2eMULTI). Both Maximum and Weighted Average 
are used as combination operations. The Ideal-world 
model is considered first. FACiLE achieves much 
higher accuracy in trust estimation when the fraction of 
“Good” nodes is higher than 50%, for both 
combination operations as shown in Figure 5, unless 
all nodes are “Good”. In the latter case, all three 

approaches are perfectly accurate. If the fraction of 
“Bad” nodes is greater than 50%, then it seems a better 
policy not to trust anyone, to which the end-to-end 
trust inference approach amounts.  

Figure 5. Identification accuracy for various 
combination operations and MULTI 
concatenation (Ideal-world model) 

Figure 6. Identification accuracy for various 
combination operations and MULTI 
concatenation (Real-world model) 

In the case of the Real-world model, significant 
distortion is induced to the inferred trust estimated by 
the end-to-end approach, which thus fails to discover 
“Good” nodes as their percentage increases; see Figure 
6. On the other hand, FACiLE remains efficient with 
both combination operations achieving very high 
accuracy in inferred trust values Clearly, the cases 
where e2eMULTI outperforms our approach are not of 
practical interest because they have very small 
percentages of “Good” nodes. Also, we have 
conducted experiments having the population being 
changed at a high rate; the results have similar trends 
for the various concatenation and combination 
alternatives with somewhat lower accuracy due to the 
changing neighbours. (For brevity reasons we omit the 
relevant graphs.) Thus, our approach is applicable to 
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environments with changing population as well, e.g. 
peer-to-peer systems. 

Next, we investigate how the effectiveness of 
FACiLE is affected by the presence of “Ugly” nodes. 
We consider MULTI and Max for concatenation and 
combination respectively in the Real-world model. As 
shown in Figure 7, our approach achieves high hit ratio 
even for large fractions of “Ugly” and “Bad” nodes. 
Hence, the effectiveness of our approach is not 
affected by such dynamic behaviours for reporting 
referrals. These results also apply for the Ideal-world 
model.   

Figure 7. Identification accuracy in the 
presence of “Ugly” nodes (Real-world model) 

Finally, we have performed experiments in which 
the direct experience after transacting with a distant 
information source is incorporated to the trust metric 
for that source. (For brevity reasons, we omit the 
relevant graphs.) In this variant, the trustworthiness of 
the remote node results from the weighted average of 
the inferred trust calculated by the various approaches 
and the direct trust resulted by experience of the 
querying node with this particular remote node. The 
weight of direct trust increases as more experience is 
gained. These experiments showed that a satisfactory 
improvement to the estimation accuracy of FACiLE 
can be thus attained. However, storing direct 
experience constitutes a considerable overhead, due to 
the huge number of sites visited. Therefore, it can only 
be beneficial for remote sites that are periodically 
visited over long time periods.  
 
4. Concluding Remarks 
 

Our proposed approach (i.e. FACiLE) uses the 
personal trust estimations of the neighbours of the 
distant node and combines them appropriately on the 
basis of the inferred trust values for the neighbours. It 
proved to be very effective in eliminating the distortion 
in trust inference introduced in paths of the Semantic 
Web or of trust graphs in general without relying on 

the existence of pre-trusted nodes. FACiLE can also be 
applied to other contexts such as grid, mobile ad-hoc 
networks etc. Such studies are left for further research. 
An important property of our approach is that its 
implementation does not require a centralized 
infrastructure for the discovery of paths to distant 
nodes; path discovery starts at each querying node that 
only needs to know its neighbours. This can be 
implemented effectively by means of a flooding 
mechanism that traverses either all edges or selectively 
only edges to nodes of the highest degree [12] and for 
a fixed number of hops away from the querying node. 
Our approach is compatible with the current 
specification of the Semantic Web, and, for example, it 
can be based on the extended “Friend-of-a-Friend” [6]. 
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