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Abstract—Demand Response (DR) programs constitute an ef-
ficient way to alleviate the problem of peak demand in smart
grids. While the potential impact of DR can be significant, its
success essentially depends on the participation and responsiveness
of consumers. In this paper, we focus on the design of effective
contract-based automated DR programs by energy providers that
own supportive generators to meet excess demand and employ
DR as a means to avoid their costly activation. We derive a
theoretically justified formula for the amount of incentives that
should be offered to a consumer to accept such a contract. Based
on this, we introduce an algorithm for selecting the optimal set of
consumers in terms of total incentives. This algorithm is employed
under two different policies for restricting (in a different way) the
discomfort caused to consumers. We evaluate these policies using
real-world data and present interesting insights about the efficient
selection of consumers to be targeted for DR and the total amount
of incentives offered to them by the provider.

I. INTRODUCTION AND MOTIVATION

Demand Response (DR) constitutes an effective solution to

address the supply-demand imbalances in smart grids [1] and

avoid the associated high production costs. However, design-

ing a successful DR program greatly depends on consumers’

participation, which in turn is highly affected by the level of

inconvenience caused to them during a DR event due to the

modification imposed to their consumption patterns [1]. Energy

providers offer various types of DR programs with associated

incentives to compensate for this inconvenience. Estimating the

appropriate amount of incentives needed to motivate consumers

to participate in DR is considered a major challenge for DR

designers.

In this paper we focus on incentive-based Automated DR

(ADR) programs for residential consumers that exploit the use

of Direct Load Control enabled appliances. Such programs can

be applied by an energy provider to serve the demand up to an

upper threshold Qs of daily electricity capacity, above which

the marginal cost of supplying is much higher. Although it

is common for providers in various countries and contexts of

operation to cope with such a situation, our work is motivated

by a realisation of this setting that we encountered in Lulea,

Sweden, in the context of projects WATTALYST and OPTi.

In Lulea, the local provider uses the steelworks excess gas

to operate the main production plant as the best choice from

both an economic and environmental perspective. However,

when this is not sufficient (e.g. at 7-8am in weekdays), the
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provider activates the peak load generators and uses costly

supplementary energy production (e.g. via fossil fuels). This

results in considerable additional generation cost as well as

in a negative environmental impact [2]. By implementing DR

programs, such a provider can limit the total daily demand to

the base capacity threshold Qs to avoid the operation of its peak

production plants.

One of the most important challenges in DR is the uncertainty

on the actual load curtailment to be attained by consumer. In

ADR there exists an a priori contract-based agreement between

the provider and the consumer about the load to be curtailed

or interrupted directly by the provider. However, the consumer

should be adequately incentivized to adopt this contract. Fur-

thermore, to make such a contract more attractive, it should

include terms restricting the discomfort caused to consumers,

conferring fairness on them and avoiding negative phenomena

such as participation fatigue. In each DR event, the load of

the targeted consumers will be curtailed subject to the agreed

restrictions of discomfort, but they will be offered incentives

according to their contract.

To address these challenges, we build on previous work [3],

which deals with incentives for single DR events, and present in

this paper a methodology for designing efficient contract-based

ADR programs taking into account consumers’ preferences and

external context, e.g., the weather. We design ADR programs

according to which consumers are both compensated for a

specified amount of energy curtailment and assigned an optimal

schedule, using a consumer net benefit maximization approach.

In particular, the key contributions of this paper are:

1) A novel, yet simple and theoretically justified approach

to determine the value of incentives to be offered to a

consumer in an incentive compatible contract, so that he

is incited to opt-in ADR, based on the assessment of each

consumer’s net benefit loss.

2) An algorithm to select the optimal set of consumers to be

targeted for DR and two accompanying policies that restrict

the discomfort caused to consumers, thus attaining some

fairness among them. One of the policies was introduced

in [3] and restricts the imposed reduction in consumption.

The other policy is innovative and restricts the reduction

in consumer’s utility due to DR.

We evaluate and compare these policies, using a small real-

world dataset, and assess the applicable trade-offs, e.g. the new

policy for targeting consumers leads to lower total incentives

offered by the provider to attain the goals of the DR program.



II. RELATED WORK

The literature on DR is already very extensive. Below, we

briefly discuss certain articles and real-life examples that are

more closely related to our work. A recent work [3] proposed

an inclusive DR system that helps an electricity provider to

design an effective DR event by analysing its consumers’ con-

sumption data and external context. It develops a methodology

to estimate consumers’ consumption preferences that we also

employ in our paper, a greedy algorithm to identify the set of

consumers to be targeted, and offers incentives for single DR

event. On the contrary, [5] and [6] propose economic models

for different types of DR programs by simulating consumers’

behavior for different incentives and penalties, while incentive-

based consumption scheduling mechanisms are presented in [7].

Moreover, according to empirical work on consumers’ selection

in [4], consumers prefer simple programs and ADR. In fact,

it is shown in [8] that together with incentives, the diversity

of contract types is important to foster consumer participation.

Moreover, [9] deals with two curtailment contract types: au-

tomated contracts that prescribe the load curtailment for each

consumer and voluntary contracts that allow curtailment to vary

with the consumer’s opportunity cost. [10] proposes a contract

framework for provisioning DR for ancillary services. In real

energy markets, several ADR programs gravitate towards the

participation of residential consumers [12]; e.g., ADR programs

in California offer generous incentives to customers per kWh

of consumption reduction, particularly to those employing a

technology enabling the automated response to DR signals [13].

The aforementioned literature clearly recognizes the signif-

icance of incentives and rewards for DR adoption. However,

no simple yet effective approach on the formulation of the

appropriate incentive-based contracts for engaging users in

automated DR programs is presented. Therefore, there is an

evident gap on designing ADR-specific approaches that also

exploit the capabilities of present and future smart grids and

appliances. In the present article, inspired by real-life industry-

driven requirements, we address this gap. We develop a theoret-

ically sound methodology for the energy provider to plan ADR

programs, while offering the minimum amount of incentives

and ensuring fairness with respect to inconvenience among the

residential consumers participating in DR.

III. THE MODEL

We consider a set of N households served by a single energy

provider. Households have already signed contracts, according

to which, when targeted for DR, they give up control of specific

appliances. Thus, we henceforth view each household as a single

consumer that collaborates with the utility as agreed. Our basic

timeframe in which DR is applied is a single day divided into

timeslots (say 24 hours or 4 6-hour periods), indexed as t ∈
T := {1, 2, . . . , T }. This day corresponds to a known context;

e.g. warm summer weekday.

A. The Consumers

Each consumer i operates a set of appliances Ai, such as

air conditioning, refrigerator, television etc. For each appliance

α ∈ Ai of consumer i we denote by qi,α,t its power consumption

during timeslot t and by ~qi,α the vector (qi,α,t, ∀t ∈ T ) of

power consumptions, all applying for the day considered. Each

consumer i is characterized by the following, all of which

correspond to the context of the day considered:

• Utility: In each timeslot t, consumer i attains a utility

Ui,α,t(qi,α,t) from consuming qi,α,t on appliance α.

• Charging tariff: At each timeslot t, consumer i is charged

according to a given price pt, which corresponds to the per

unit of consumption charge and is previously announced by

the provider. For simplicity we assume that pt is common

for all consumers, but may depend on the time-of-day.

• Optimal Consumption: Consumer i has an optimal daily

consumption vector and an associated optimal consumption

Qi for the day considered. Following the approach of

[3] (and other articles of course), we assume that these

are derived by maximizing the total net benefit of the

consumer; see below.

To express the total utility, i.e. the total satisfaction ex-

perienced (or the total value acquired) by a consumer when

operating a set of specific appliances, as a function of his overall

daily consumption pattern ~qi,α, we follow the methodology of

[3]. In particular, the utility for each appliance is modeled

according to the categorization of appliances by [11] and the

corresponding utility functions introduced therein, which are

continuously differentiable concave functions of qi,α,t. Concav-

ity is in line with diminishing additional satisfaction from an

additional unit of energy, as the total consumption increases.

Furthermore, the total utility attained is the weighed sum of the

per appliance utilities; note that Ui,α,t(qi,α,t) as defined above

incorporates the weight assigned by consumer i to appliance

α. Summing these Ui,α,t(qi,α,t) for the various appliances and

timeslots, we obtain the total daily utility. Given that the energy

tariff scheme is known and declared above, each consumer i is

assumed to act rationally by choosing that consumption schedule

that maximizes his total Net Benefit (NBi), i.e. the utility gained

minus the monetary charge.

Consumer i’s objective (max net benefit):

argmax
~qi,α

∑

t∈T

∑

α∈Ai

Ui,α,t(qi,α,t)−
∑

t∈T

ptQi,t (1)

where Qi,t =
∑

α∈Ai
qi,α,t. We denote also as Ui,t(Qi,t) =∑

α∈A Ui,α,t(qi,α,t) the utility obtained by consumer i from the

consumption over all appliances in timeslot t and as Ui(Qi) =∑
t∈T Ui,t(Qi,t) the total utility obtained from the consumption

over all timeslots. Note that both utility and net benefit are

expressed in monetary units.

B. The Energy Provider

We consider the case of an energy provider who owns sup-

portive peak load generators, activated only when the base plant

production cannot meet the excess demand of its customers. In

particular, we assume that there is an upper threshold Qs of

electricity production in each day, above which the marginal

cost of production is very increased due to the activation

of supplementary energy based generators. Thus, the operator

wishes to restrict production below Qs. Regarding production

cost, we assume that the provider is characterized by a cost



function C(Q), where Q =
∑

i∈N Qi and Qi =
∑

t∈T Qi,t.

The function specifies the cost for the provider to provide a daily

Q amount of power. We assume that the cost function C(Q) is

convex and increasing in Q (in accordance to [11]) as long as

Q ≤ Qs. Note that in general the cost of operating the basic

power plant should be estimated per timeslot t rather than on a

daily basis. Also, the production upper threshold should be taken

to apply for each timeslot. In our setting, for simplicity we only

consider the daily constraint of Qs, which is less restrictive, as

well as a daily total production cost. These assumptions apply

e.g. when the provider possesses some storage capabilities.

As the provider aims to limit the production below the

threshold Qs, he may have to resort to DR, to limit consumers’

total daily demand accordingly. Since this threshold is strict,

automated DR, which imposes surely the necessary reductions

in the demand to the targeted consumers, is the most appropriate

approach. Whenever a DR event is necessary (see Section IV),

the provider has to solve the following optimization problem:

Energy Provider’s objective:

arg max
Ii,

~̂
Qi,t

∑

i∈N

∑

t∈T

ptQ̂i,t − C(
∑

i∈N

Q̂i)−
∑

i∈N

Ii (2)

such that ∑

i∈N

Q̂i ≤ Qs

(3)

where Q̂i =
∑

t∈T Q̂i,t. Recall that Qi,t denotes the uncon-

strained total consumption of consumer i if no reduction is

imposed, while we use “hat” to denote the new consumption

schedules after the reductions in demand are enforced by the

provider to selected consumers targeted for DR. Also, Ii denotes

the incentives offered to consumer i if targeted for this DR

event. In cases where the constraint on the total demand (3)

holds with equality (which we will assume when applying the

targeting algorithm presented below) both the total revenue and

the total cost of the provider are fixed. Therefore, the optimal

boundary solution of (2) is that of the problem of minimizing

the total incentives, i.e.:

argmin
Ii

∑

i∈N

Ii (4)

Note that, as explained below, the incentives are already pre-

scribed in the contracts, and in fact they should be defined

in such a way that the consumers accepting the contracts are

adequately compensated whenever targeted for DR. Therefore,

the above problem amounts to targeting for DR the consumers

needing the least total incentives to meet the threshold on

the total demand. In fact, the provider should verify that the

cost savings attained due to DR exceed the losses due to the

incentives and to selling less energy.

IV. INCENTIVES AND TARGETING POLICIES

In this section, we specify i) the DR incentives that should

be included as terms in the contracts of the consumers engaged

in DR and ii) which consumers should be targeted in a day

where DR is necessary for the provider. To achieve these we

make the following assumptions; within the time horizon of a

day, for which DR planning is to be performed, the consumers

can shift load between different slots. However, they cannot shift

load between different days, since by assumption consumers are

characterized by an optimal consumption per day, which they

choose for themselves as a result of maximixing their net benefit

NBi as per (1). Hence, any deviation from this consumption is

bound to reduce the net benefit obtained by the consumer. In

fact, in the case of DR, a targeted consumer is mandated to

consume less than his optimal daily quantity. This results in

a lower net benefit as well as in a utility value too, due to

the inconvenience caused to him. To this end, in order for a

consumer to be convinced to participate in an ADR program,

i.e. to sign the relevant contract granting the operator the right

to control the appliances in consumer’s premises and impose

a modified consumption schedule whenever he is targeted for

DR, the provider should offer him monetary incentives that

correspond to his loss of net benefit. Thus, rational consumers

would become indifferent to the changes in their consumption.

In other words, the incentives offered to consumers should equal

their total net benefit loss due to the reduction in consumption:

Ii = NBlossi = NBi − ˆNBi (5)

where ˆNBi < NBi. Note that ˆNBi expresses the net benefit

obtained by consumer i under the new consumption schedule,

that is, after the reduction in demand is imposed by the energy

provider. Thus, the provider should endeavor DR contracts that

are incentive compatible, i.e. they serve the interests of both

the consumer and the provider, both of whom are better off

and thus have the incentive to adopt the contract. Moreover, as

already explained a targeted user also incurs a loss in utility.

Hence, the ADR contract should also guarantee limits to the

possible inconvenience. Therefore, we conclude that in order for

ADR to be attractive to users, the contract terms should specify

beforehand i) the incentives’ calculation methodology, and

particularly that whenever targeted for DR the consumer will be

compensated the amount equal to the loss of net benefit caused,

and ii) the maximum possible reduction in the inconvenience,

about which we consider two different policies below. In par-

ticular, the provider can either enforce a maximum percentage

reduction in consumption ηmaxq
that can be imposed to each

of the targeted consumers, or alternatively define the maximum

reduction in utility ηmaxu
suffered per targeted consumer.

The provider now is faced with the following situation. He is

assumed to have determined in advance the maximum amount of

energy Qs that he can supply; he charges consumers with price

pt per unit of consumption and maintains knowledge (either

full or limited) of the total power demand Qi, of the vector of

optimal consumption
−→
Qi := {Qi,t, ∀t ∈ T } and of the utility

function of consumer i, ~Ui,t(Qi,t) := {Ui,t(Qi,t), ∀t ∈ T }.

The consumers, which are likely to be targeted, are those that

have already signed contracts with the provider, which include

their enrollment in an ADR program and grant permission for

their election in order to be targeted for DR. The terms of these

contracts are defined as above, so that they are incentive com-

patible. For simplicity, we henceforth assume that all consumers

have signed such contracts, and are eligible to be targeted.

When it is predicted that the total demand will exceed the

threshold Qs, the energy provider activates the ADR programs



and resorts to targeting a subset of the consumers in order

to offer the minimum total incentives to restrict total demand

at or below Qs, while also abiding with the terms of the

signed contracts. To this end, the provider should employ the

corresponding selection algorithm associated with each of two

policies described in the sequel.

A. Policy 1: Constrained reduction in consumption

Here, the provider defines a priori the maximum percentage

reduction in consumption ηmaxq
, as a fraction of consumers’

optimal consumption Qi, ∀i ∈ N . To simplify our discussion,

we assume that ηmaxq
is the exact percentage reduction to

be imposed to each targeted consumer. Then, by applying

Algorithm 1 the set of consumers to be targeted is extracted.

The main idea is that the consumers are targeted in increasing

order of the incentives (i.e., reduction in net benefit) per unit of

consumption reduction applicable for this value of ηmaxq
.

Algorithm 1: Consumer Selection

STEP 1: Define the required reduction to be achieved as:

∆Q =
∑

i∈N

Qi −Qs (6)

Continue only if this is positive.

STEP 2: For each consumer i define the reduction in con-

sumption as a percentage of the optimal consumption ∆Qi =
ηmaxq

Qi; also define the new consumption as Q̂i = Qi −∆Qi

to be consumed.

STEP 3: For each consumer i find Q̂i and the vector {Q̂i,t, ∀t ∈
T } that maximizes his ˆNBi, i.e. for each consumer i solve:

argmax
~̂qi,α

∑

t∈T

∑

α∈Ai

Ui,α,t( ˆqi,α,t)−
∑

t∈T

ptQ̂i,t (7)

such that
∑

t∈T

∑
α∈Ai

ˆqi,α,t = Q̂i

STEP 4: For each consumer i: a) calculate the net benefit loss

as per (5) b) set the incentives Ii equal to the net benefit loss

NBLossi
STEP 5: For each consumer i estimate the incentive that

corresponds to one unit reduction in consumption as uIi =
Ii

∆Qi
.

STEP 6: Sort consumers in ascending order of the value of uIi.

We refer to this set by S. Set j = 1.

STEP 7: Set the temporary decision set TS of the targeted

consumers as {j, j + 1, ..., j +N − 1}. Set j = j + 1.

STEP 8: Repeat step 6 until
∑

i∈TS
ˆ(Qi) ≥ ∆Q

STEP 9: Make the necessary adjustments for the last selected

consumer.

STEP 10: The final set of targeted consumers is given by TS

and the respective consumption patterns are those derived in

Steps 3 and 9. The rest of the consumers are not targeted thus

maintaining their unconstrained optimal consumption pattern.

Note, that the last selected consumer is not always assigned a

reduction equal to Q̂i,t, but the remaining amount of the required

reduction so that we attain the exact consumption threshold. For

this consumer, in Step 9 of the algorithm, Steps 3 and 4 should

be ran again to calculate his net benefit loss to be incurred and

the necessary incentives.

Although the provider decides on the value of ηmaxq
in

such a way that the algorithm results in a subset of consumers

targeted, there is a lower threshold ηminq
, under which the

proposed reductions in consumers’ consumption do not achieve

the provider’s goal with regard to (6) meaning that ηmaxq
must

satisfy some feasibility condition. For the required reduction in

demand ∆Q =
∑

i∈N ∆Qi we have that

∆Q ≤ ηmaxq

∑

i∈N

Qi (8)

Using (8) we establish that the percentage of reduction in

consumption should be (at least) equal to:

ηminq
=

∑
i∈N Qi −Qs

∑
i∈N Qi

= 1−
Qs

∑
i∈N Qi

(9)

Hence the condition (9) leads to a feasible solution of the

problems (2) and (7).

B. Policy 2: Constrained reduction in utility

So far, we have assumed that for each consumer i the permis-

sible reduction in consumption is expressed in the contract as a

percentage ηmaxq
of the optimal consumption. This was also the

assumption made in [3] in order for the provider to indirectly

enforce some limit to the inconvenience caused. However, it is

plausible that even a small reduction of the energy consumed can

cause great inconvenience, especially in cases where consumers

appear to be less flexible to adjustments in their schedule. Thus,

in such cases, constraining the percentage reduction in the utility

gained by each consumers is expected to be preferable in terms

of both the inconvenience caused and the total incentives to be

offered, since the smaller the difference in utility, the lower the

inconvenience cost that the consumers have to incur. To this end,

for this algorithm the selection criterion differs only in STEPS

2 and 3 as follows:

STEP 2: For each consumer i define the reduction in

utility as a percentage of the utility obtained under the

optimal consumption schedule ∆Ui = ηmaxu
Ui(Qi).

STEP 3: For each consumer i find Q̂i and the vector

{Q̂i,t, ∀t ∈ T } that maximises his ˆNBi, i.e. for each

consumer i solve:

argmax
~̂qi,α

∑

t∈T

∑

α∈Ai

Ui,α,t( ˆqi,α,t)−
∑

t∈T

ptQ̂i,t

such that
∑

t∈T

∑
α∈Ai

Ui,α,t( ˆqi,α,t) = Ui(Qi)−∆Ui

A similar approach involves the enforcement of the reduction

in terms of net benefit rather than utility, which would ensure

also fairness on the selection of consumers without though

guaranteeing the percentage reduction in consumers’ discomfort.

Further investigation of this approach is left for future research.

V. EXPERIMENTAL EVALUATION

To experimentally evaluate our approaches we use real con-

sumption data from 6 households in India. The data constitutes

of sensor readings at a granularity of ten seconds. We distinguish

two cases with regard to the type of the available data. First, we



assume that appliance level measurements for four different ap-

pliances are available (air-conditioner, fridge, washing machine

and television). Second, the provider’s information is limited to

consumption data concerning only the most important devices,

i.e. those that consume large loads; hence we consider only

measurements for the air-conditioner and fridge that comprise

the largest portion of the total load. The readings in both cases

are extracted for a given context, that is weekday 11 April

2014, and are used as input to the methodology described in

Section 3.2 of [3] to extract knowledge on each consumer’s

utility functions and the corresponding weights, indicating the

importance that the consumer places on each specific appliance

and the flexibility in altering its operation. For each day and

consumer, the recorded data is used to obtain consumption in

Wh for each time slot with a duration of 6 hours during the

day. So, we obtain the optimal consumption Qi of consumer i.

A. Evaluation of Policy 1: Full vs Limited information

Say that the energy provider wishes to narrow the total

demand by a value ∆Q that amounts to 10% of the uncon-

strained total optimal consumption and define the value of

ηmaxq
. Following (9), the value of ηmaxq

must be greater or

equal to 10%. Hence, we have taken three different values for

ηmaxq
to investigate the results regarding the incentives offered,

the social welfare achieved and the set of selected consumers.

For conciseness, Table I depicts the results of the selection

algorithm for two values of ηmaxq
. Consumers are listed in

ascending order of uIi (in Indian Rupee (|)) together with their

consumption reduction ∆Qi (in Wh) and utility reduction ∆Ui

(also expressed in |).

The results indicate that for different values of ηmaxq
, the

number of selected consumer decreases and therefore the in-

centives offered by the provider. In particular, in the case of

full information (Table Ia), we observe that a small increase of

ηmaxq
leads to the same number and set of selected consumers

but with lower amount of incentives, which is anticipated

as the constraints are relaxed and the algorithm can impose

greater reduction to those consumers with lower value of uIi
(which however depends on ηmaxq

) and avoid allocating large

reductions to the “expensive” consumers. If we increase the

value of ηmaxq
to 20%, then the algorithm results in selecting

only 3 out of 6 consumers to target for DR, yielding in lower

total incentives equal to 162.12|.

Similar outcomes arise in the case of limited information

in Table Ib. Here, the increase of the value of ηmaxq
has a

direct impact on the number of selected consumers and the total

incentives. A further increase of ηmaxq
to 20%, leads to even

better results in terms of both the number of selected consumers

(only 2) and the total incentives to be offered (173.71|).
However, in this case more incentives are required than when

full information is available. This is due to the inelastic nature

of the particular type of devices, their operational constraints

and the context under which they operate. Still, it is entirely up

to the provider to decide whether investing in appliance level

meters is more economically efficient in the long run than the

cost of providing incentives to his consumers.

B. Evaluation of Policy 2: Full vs Limited Information

Here, we consider that the energy provider wishes to narrow

the total demand by ∆Q = 25%, without reducing consumers’

utility more than ηmaxu
= 5%. Apparently, for such small value

of ηmaxu
the problem is very restricted and the optimal solution

would be to select all consumers in order to achieve provider’s

objective. Nevertheless, both under full and limited information,

the algorithm selects 4 out 6 consumers to target for DR (see

Table II). Again, for limited knowledge, the algorithm leads to

a higher total amount of incentives offered, which is of course

reasonable, due to the type of loads that are considered and the

restrictions in the consumption schedules to be proposed.

C. Comparison of the policies

So far we can deduce that Policy 2 selects the optimal set

of consumers to be targeted with the minimum possible incen-

tives without the need to apply large reductions in consumers’

utility values. However, a comparison of the two policies with

ηmaxq
= ηmaxu

would not be fair, as despite the fact that both

policies aim at solving the same problem, these percentages

are included in different constraints. In this context, another

important performance index to be reckoned is the number

of consumers to be targeted. To this end, we have defined

a specific setup in order to evaluate their performance, by

considering a case where the provider has full knowledge and

both policies would target the same number of consumers. Due

to the small total number of consumers’ data available, we

introduce in the sequel values (e.g. in reduction of consumption

and utility) that do not correspond to real scenarios but serve

our scope to provide some insights concerning the best choice

of policies employed. Thus, say that the energy provider aims at

reducing the total demand by 20%. To achieve that, consumers’

consumption is reduced by ηmaxq
= 30% under Policy 1 and

their utility by ηmaxq
= 10% under Policy 2.

The outcomes suggest that if both policies select the same

number of consumers to target (thus providing a fair basis for

comparison), even for more restrictive values of ηmaxu
Policy 2

outperforms Policy 1 in terms of incentives (123.75|, 86.55|for

Policy 1 and 2 resp.). This is due to the fact that even a small

reduction of the energy consumed can cause great inconve-

nience, which in turn requires high incentives to compensate

the consumer. By employing Policy 2, the energy provider

acquires a more clear insight of the consumers behaviour and

their corresponding discomfort levels and therefore selects the

set of consumers targeted more effectively. Another observation

refers to the sorting list of consumers. One would expect that

the process of ordering would provide the same results, since

both algorithms follow the same sorting criterion, but this is

not always the case as the decrease imposed to the consumers

in their consumptions is estimated differently in each case,

hence the values of uIi and Ii may vary as well. Although

in the example the same number of consumers is targeted, the

sets of targeted consumers differs. Thus, in an environment of

similar characteristics, the provider applying ADR and aiming

to minimize the total incentives should choose Policy 2, even if

he has to commit to a strict constraint on utility loss (i.e. to a

low value of ηmaxu
) to make the contracts more attractive.



TABLE I: Policy 1: Full vs Limited Information for ∆Qd = 10%

(A) Policy 1: Full Information

ηmax,q = 12% ηmax,q = 15%

Consumer Ii(|) ∆Qi(Wh) ∆Ui (|) Ii(|) ∆Qi(Wh) ∆Ui(|)

4 23.57 4476.13 26.13 23.93 4323.54 26.14

5 22.12 3509.99 25.16 22.62 3390.33 25.19

1 134.98 20287.97 146.71 135.07 19596.33 146.79

6 69.52 12827.32 103.16 65.39 13791.21 103.17

3 0 0 0 0 0 0

2 0 0 0 0 0 0

Total Incentives (|) 250.18 247.02

(B) Policy 1: Limited Information

ηmax,q = 12% ηmax,q = 15%

Consumer Ii(|) ∆Qi(Wh) ∆Ui(|) Ii(|) ∆Qi(Wh) ∆Ui(|)

5 23.30 3509.99 25.31 23.80 3390.33 25.31

1 151.90 20287.97 163.52 152.99 19596.33 163.52

6 99.58 12523.48 106.75 82.82 13028.23 106.75

3 29.59 3575.18 31.19 0 0 0

4 0 0 0 0 0 0

2 0 0 0 0 0 0

Total Incentives (|) 304.37 259.61

TABLE II: Policy 2: Full vs Limited Information for ∆Qd = 25% and ηmaxu
= 5%

(A) Policy 2: Full Information

Consumer Ii(|) ∆Qi(Wh) ∆Ui(|)

5 41.83 5124.57 25.30

4 23.89 2813.56 26.13

3 43.34 4058.66 31.10

2 7.73 1151.87 24.89

6 0.00 0.00 0.00

1 0.00 0.00 0.00

Total Incentives (|) 116.80

(B) Policy 2: Limited Information

Consumer Ii(|) ∆Qi(Wh) ∆Ui(|)

4 67.68 6980.62 42.21

5 41.01 3958.40 25.32

3 30.24 1714.88 31.20

2 20.12 494.76 24.93

1 0.00 0.00 0.00

6 0.00 0.00 0.00

Total Incentives (|) 159.05

VI. CONCLUSIONS AND FUTURE WORK

In this paper we developed a methodology to assist the

design of effective contract-based ADR programs by energy

providers in order for them to avoid the costly activation of

extra (peak load) generators. We derived a theoretically justified

methodology for the calculation of incentives to be offered to

a consumer in order to accept such a contract and introduced

an algorithm for selecting the optimal set of consumers. This

algorithm is employed under two different policies for restricting

(in a different way) the discomfort caused to consumers. The

results have shown that for increasing values of the permissible

reduction in comfort per consumer, the number of selected

consumers decreases and so do the total incentives required to be

granted by the provider to meet his goal. In addition, the policy

that restricts directly the reduction in each consumer’s utility

selects the optimal set of consumers with a lower amount of

incentives without imposing large reductions in utility values.

Moreover, in the case of limited information higher incentives

are required than when full information is available. This is

due to the inelastic nature of the particular type of devices,

their operational constraints and the context under which they

operate. On the contrary, in the full information case, small

domestic appliances, e.g. washing machines, are more flexi-

ble in changes in their consumption pattern thus resulting in

lower required incentives. However, whether the benefits of the

knowledge of full information justify the cost of deploying

extra sensors is not apparent. A detailed cost/benefit analysis

is needed for the provider to decide whether investing in

appliance level meters is more economically efficient in the

long run than the cost of providing higher incentives to his

consumers due to incomplete information. With the decreasing

cost of sensors and the continuous growth of Advanced Metering

Infrastructure (AMI) deployment, it is expected that investing in

a few additional sensors, yet only for appliances with significant

consumption, can be beneficial.

In our future work, we intend to validate our model on the

basis of a larger set of available data from real consumers,

so that we our evaluation can match more closely real life

conditions. Furthermore, we plan to include certain terms in

the contract to deal with the possibility of fatigue of targeted

consumers, by restricting the total number of times they are

targeted e.g. within a month, or by increasing by a small factor

the incentives of frequently targeted consumers.
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