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Abstract. Participatory Sensing concerns the sharing of sensor information
within user communities, forming a body of knowledge that can be beneficial to
the community itself, either directly or through specialized applications. We in-
troduce a framework for a marketplace where such applications can sell and buy
information. In our approach, all involved entities are viewed as economic agents.
Suppliers of sensor information may be reluctant to share their sensors due to
costs in transmitting information (battery, bandwidth, etc). Potential customers
may also be reluctant to participate in the market if the prices for the informa-
tion are prohibitively high. Within this framework, we focus on the buyers’ side
and on mechanisms that take such incentive issues into account. Using various
ideas from the cost-sharing literature, we propose three classes of mechanisms,
satisfying different properties each. We evaluate them experimentally, comparing
their performance according to metrics such as social efficiency, cost coverage
and budget deficit, as well as metrics related to encouraging participation, since
this can lead to the overall sustainability of the market in the long run.

1 Introduction

Personal mobile computing is undergoing a major revolution: smartphones have signif-
icantly changed the way humans interact, as powerful, programmable mobile devices
outfitted with a range of advanced and low-costing sensing capabilities. The exponential
growth in data capture and data sharing capabilities is giving rise to new applications
and user habits. People have already started participating in sensing, instrumenting and
analyzing aspects of their lives, eventually becoming producers of data, rather than just
being consumers. These developments are creating a compelling need for new mecha-
nisms to support such a participatory community-sensing environment, where multiple
users, business and applications dynamically interact and share sensor information.

Current work on participatory sensing systems mainly focuses on solving the techni-
cal challenges of the physical environment, such as enabling low-power, low-bandwidth
wireless sensor network communication, energy and resource management etc. Further-
more, some state-of-the-art systems have already been deployed like OpenSense [11]
and CrowdPark [8] (for more on these, see Section 2). However, what has been under-
mined and not adequately addressed so far is the fundamental economic issue of why
should users share or exchange such information that is costly to them and what is the
necessary technology that can facilitate this aspect.
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Our long-term goal is a sustainable market for sensor information in participatory
sensing environments. To begin with, we need first to determine the main features of the
market such as the nature of the goods that are being sold, the supply and the demand
side and the decisions that a market mechanism needs to make. In particular, the model
we propose consists of the following elements:

– The sensor goods. The basic good traded in this market is a sensor. More precisely,
we consider the case where ‘buying’ a sensor consists of buying the right to have
access to the sensor information for a given time slot. We abstract from the market
the process of declaring sensor availability and accessing the sensor data. This is
part of the implementation services of the market. At the abstract level of our model
we assume that the market operates in discrete time (time slots of a given physical
duration) and at any given slot, there is a set of sensors available in the market (sup-
ply and demand are renewed between successive slots). The information provided
by a sensor can be thought of as a ”digital good” that can be simultaneously bought
by more than one buyers, as it can be duplicated at almost zero cost.

– The supply part, consisting the suppliers of sensor information, i.e., the individu-
als owning sensor-equipped devices. Each supplier can make his sensors available,
independently of others. For this, he needs to specify the minimum price he is will-
ing to charge for a particular sensor in order to supply its sensing information. In
other scenarios (not addressed in this paper), he may ask for a single charge to make
all sensors available instead of pricing individual sensors. We assume that the sup-
plier can only sell the rights for accessing his sensors to some intermediary, in our
case, the market operator. Hence, the supplier does not communicate directly with
the buyers, and does not get compensated on a per usage basis. He only obtains a
payment according to what he asked for, through the market operator.

– The demand side, which consists of the applications that are interested in acquiring
sensor information. We think of each such application as a distinct customer in our
market whose demand is expressed by specifying the set of sensors he is interested
in. Our model of customer preferences allows for a variety of types. We assume
that each buyer specifies to the market operator his maximum willingness to pay
for the set of sensors he requests.

– The market mechanism. A mechanism, run by the market operator, defines the
rules of the interaction between buyers and suppliers. It is a function that takes as
input the supply and the prices from the sellers, along with the demand and the
willingness to pay from the buyers, and as a result, it derives the allocations of the
goods and the payments from the agents.

Contribution: We view as our main contribution the design of the market model itself.
The framework for the marketplace, is one of the first attempts to define such a large-
scale sensor market, where applications of various forms can sell and buy information.
In our approach, all involved entities are viewed as economic agents and one of our
goals is to define appropriate mechanisms for running the market.

Within this framework, we focus mostly on the buyers’ side and we use various
ideas from the cost-sharing literature, to propose three classes of mechanisms, satisfy-
ing different properties. The first is inspired by the work of Moulin and Shenker [9, 10]
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on a simpler setting than ours. The second is based on an altruistic paradigm, where
agents can contribute towards covering the cost-shares of other agents that cannot af-
ford to pay the entire amount. The incentive behind such a move is that it increases the
demand in the system and hence reduces the average cost of sensor access. Such altruis-
tic behavior even by a small set of agents can be important for enhancing participation
and increasing the social welfare of the market. In our mechanisms of this class, we
impose a related rule, rather than relying on the inherent altruism of agents, thus ending
up with several nice performance properties. Finally, the third class of mechanisms is
essentially the Groves mechanisms, although we focus particularly on the VCG mech-
anism [2]. We evaluate these mechanisms experimentally, according to various metrics
such as social efficiency, cost coverage and budget deficit, as well as metrics related to
encouraging participation of users, influencing the overall economic sustainability of
the market in the long run.

We believe that the aforementioned environment crafts the ideal conditions for the
creation of an open sustainable market and the underlying economic mechanisms that
will promote efficiency in sensor information exchange. Such a market, tailored to the
specificities of participatory applications, which to our knowledge is missing today,
will leverage this social phenomenon and the enabling technological advances into a
new paradigm on how people interact with each other directly and indirectly in an eco-
nomically efficient way.

2 Related Work

Participatory sensing is a very promising direction towards replacing traditional sensor
networks. There are already existing deployments that support a variety of applica-
tions like environmental monitoring (OpenSense [11]), transportation (CrowdPark [8]),
fitness (BikeTastic [12]), urban sensing (PulsodelaCiudad [14]), and others. However,
most of these platforms have suffered from insufficient participation because users that
voluntarily submit their sensing data found no interest in remaining active in the system
without being rewarded. This undesirable fact has already been observed in [3, 7, 6] and
motivates the deployment of incentive schemes so as to increase user participation.

Towards this goal, most approaches in the literature focus on incentive issues in the
supplier’s side. Namely, suppliers may drop out unless there is a positive Return on
Investment, which depends on the total cost for collecting data (battery consumption,
device resources, privacy, etc). In [7], a reverse auction is proposed to address this issue.
Another reverse auction is also proposed in [6]. The work of [3] on the other hand is
limited to using a fixed price approach. An issue that is not covered by these works is
the modeling of the demand side of the market, which is what we mainly address in this
paper.

Finally, the works from the economics literature that are most relevant to ours are the
cost-sharing mechanisms of Moulin and Shenker [9, 10]. These mechanisms work for a
simpler (binary) setting where each user is either granted the same identical service with
all other users or he is declined. We also consider the Marginal Cost Pricing mechanism,
see [9], which is the adaptation of the VCG mechanism [15, 2, 5] into the cost-sharing
setting.



4

3 Definitions and basic concepts

Suppose that there is a set N = {1, ..., n} of agents who are interested in receiving
some service from a market operator. We define mechanisms for general settings below
and we will consider instantiations to our specific settings in the next sections.

A mechanism design instance, consists of a tuple (N,O, Θ,u). The set O consists
of the possible outcomes of the mechanism, which is in the formO = X×Rn for some
set X (X denotes the space of all possible allocations of services/goods to the agents
and lies in some n-dimensional space). Hence, an outcome of the mechanism consists
of an allocation decision x ∈ X and a vector of side payments p = (p1, ..., pn). The set
Θ = Θ1 × · · · ×Θn is the set of agent types, and u = (u1, ..., un) describes the utility
functions. These functions determine the willingness to pay of each agent. For cost-
sharing settings, as is ours, we also assume that there is a cost function, determining the
cost C(x) for realizing an allocation x ∈ X (e.g., the cost for providing a service).

A mechanism M , is then a function M : Θ → O mapping each vector of declared
types by the agents to an outcome. I.e., after collecting all the offers made by the agents,
it decides a) upon an allocation x ∈ X , and b) how much to charge each participant. For
an outcome of the mechanism in the form o = (x,p), with x ∈ X , p ∈ Rn

+, the final
utility of an agent i, which is also referred to as the consumer’s net benefit or consumer
surplus, is the derived utility minus the payment, i.e., it is ui(x)− pi.

The main focus of our experimental evaluations will be on the following two im-
portant criteria:

– Budget balance. A mechanism is budget-balanced if for every instance, the pay-
ments assigned to the customers cover exactly the cost of the provider.

– Social welfare maximization. The social welfare, or social surplus, is defined as
the sum of all involved agents’ net benefits. The payments made by the consumers
cancel out with what the provider receives, hence, for an allocation x ∈ X , the
social welfare is

∑
i ui(x)− C(x).

Another property that is often pursued in mechanism design is strategyproofness,
meaning that truthtelling is a dominant strategy. We will also discuss a stronger form of
incentive compatibility, namely group strategyproofness, where no coalition of agents
has an incentive to jointly misreport their true willingness to pay. Although we do not
insist on having strategyproof mechanisms (given that in practice this may often be
a too stringent requirement), some of the mechanisms we study are strategyproof or
group-strategyproof.

3.1 Our model for the sensor market

In the marketplace we want to create, mechanisms would be run by some automated
market operator system that would act as an intermediary between suppliers and buyers.
Hence, our model consists of the following features:

– A set I = {1, ..., k}, representing the different sensor basic types, e.g., GPS, ac-
celerometer, temperature, CO2, etc. The type of a sensor describes the measure-
ment information that the sensor provides.
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– A set M = {1, ...,m} of suppliers, the owners of sensor data (via their mobile or
any other device). The suppliers will not provide their data for free since this entails
a cost (battery, bandwidth, etc). We assume that each of them specifies a price per
sensor type that he needs to be paid for in order to provide access to the value of a
specific sensor type. A value provided by one supplier can be used by many buyers.
Suppliers do not all necessarily have the same set of sensor types available.

– A set N = {1, ..., n} of potential buyers. These are agents who have a demand
for some sensor data (we use interchangeably the terms agent and buyer to refer to
any i ∈ N ). Different types of demand (e.g., elastic vs inelastic, or single tuple vs
multiple tuples) are examined in Section 4.

Within this context, the market mechanisms we evaluate fall into three categories:

1. Mechanisms that achieve budget balance. For this we will adapt ideas from the
work of Moulin and Shenker [9, 10], into our setting. The trade-off with these mech-
anisms is that they tend to produce suboptimal social welfare.

2. Cooperative mechanisms that maintain budget balance and aim towards achieving
higher social welfare, by having some “richer” agents subsidize other agents who
cannot afford their cost-share. We will again utilize the Moulin-Shenker mecha-
nisms but in combination with an ‘altruistic’ framework described in Sections 4.1
and A. Even though this presents some potential dangers (e.g. emergence of tragedy
of the commons), we believe that it is important to give priority to having an ini-
tially sustainable market that encourages participation.

3. Mechanisms that achieve optimal welfare. For this we apply the well-known Marginal
Cost (MC) mechanism [10]. It is known that such mechanisms cannot balance the
budget and we will therefore evaluate MC in terms of its budget deficit. We will also
use heuristics to approximate the optimal welfare, in settings where the problem is
computationally intractable.

We stress that our mechanisms are centered around the buyers and not the suppliers.
For the suppliers, we assume that the operator has already obtained their price per sensor
requests. For dealing with the suppliers’ side of the market, see [6].

4 Our demand domains

We present two simple orthogonal scenarios regarding the demand of the customers.
In both scenarios, the market operates in discrete time. The market operator considers
each time slot separately, he looks at the currently available data, the prices set by the
providers, the current demand for data along with their monetary offers and decides
which buyers get served and at what prices. We leave for future work the investigation
of dynamic settings (where bidders could also specify time duration in their demand).

We note here that we assume that all instances are feasible, i.e., there are enough
sensors available in the market to satisfy all buyers, in the case that they can all afford to
pay. If not, one could easily run a feasibility check and determine a maximally feasible
subset of buyers.
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4.1 Scenario 1: Inelastic demand

We consider a simple scenario of inelastic demand, in which each buyer j ∈ N is in-
terested in a subset S(j) ⊂ I of sensor types, and requests access to a single tuple
of sensors from S(j). As an example, he may request a tuple of the form (speed, ac-
celerometer). The operator can group in advance the tuples according to location or
other user constraints so that we can consider instances where we have already fixed
some particular location/neighbourhood. Each buyer j ∈ N derives a utility of uj by
receiving this tuple, hence the utility function is specified by a single number here. The
demand is inelastic in the sense that the buyer is not deriving any utility if he receives
only a strict subset of sensors from S(j). We call such buyers single-minded, in analogy
to single-minded bidders in combinatorial auctions [1].

The cost function C(R) for serving a set of customers R ⊆ N can be easily com-
puted for any R. To see this, given the suppliers’ prices, for any sensor type i ∈ I , let
c(i) be the cost of the cheapest sensor of type i (i.e., the cheapest price specified by
some supplier for type i). Since each customer is interested in receiving a single tuple,
we can use just one actual sensor for each type requested, to satisfy all customers. And
clearly the market operator should use the cheapest possible. Hence, for R ⊆ N , the
cost C(R) is the sum of the cheapest cost of all sensor types required by R:

C(R) =
∑

i∈S(R)

c(i), where S(R) =
⋃
j∈R

S(j) . (1)

Proposition 1. The cost function C(R) is monotone and submodular, i.e., we have:

– C(∅) = 0;R ⊆ T ⇒ C(R) ≤ C(T ),
– C(T ∪ {j})− C(T ) ≤ C(R ∪ {j})− C(R), ∀R ⊆ T ⊆ N and j 6∈ T .

The proof is quite simple and we omit it.

Budget-balanced mechanisms The first mechanism we consider is derived directly
from the pioneering work of Moulin and Shenker [9, 10]. Their work concerns a much
simpler setting than ours, where there is a single provider, offering the same identical
service to everyone, and each agent will be either granted or declined the service. Even
in this simple binary setup, designing mechanisms with good incentive properties is a
challenging task. We can easily adapt the approach of Moulin and Shenker to achieve
a group-strategyproof budget-balanced mechanism for Scenario 1. To do this, we need
to obtain first an underlying cost-sharing method. A cost-sharing method is a function
ξ(·, ·) such that ξ(j, R) determines the cost-share of agent j, j ∈ R, when R is the
set to be served by the mechanism. We demand that a cost-sharing method satisfies∑

j∈R ξ(j, R) = C(R) for all R ⊆ N , i.e., the sum of the payments balance the cost.
The following is an important and desirable property for cost-sharing methods.

Definition 1. A cost-sharing method is cross-monotonic if

ξ(j, R) ≥ ξ(j, T ) for R ⊆ T and j ∈ R . (2)
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The above property simply says that the cost-share of an agent should not become
higher when more people receive service.

In our experiments, we have decided to work with the egalitarian cost-sharing
method, since this may have more appeal in practice due to its simplicity and fair-
ness properties. In particular, to define the share ξ(j, R) for a given set R to be served,
we split the cost of each used sensor equally among the people who want it. For each
sensor type i ∈

⋃
j S(j), recall that c(i) is the cost of the cheapest available such sen-

sor in the market supply. Let y(i) be the number of buyers who have i in their demand
set. Egalitarian cost sharing means that each customer j contributes a share c(i)/y(i)
towards the total cost of the sensor. Hence for a buyer j, with demand set S(j), his total
cost-share under this cost-sharing method is:

ξ(j, R) =
∑

i∈S(j)

c(i)

y(i)
. (3)

Proposition 2. The cost-sharing method described by (3) is cross-monotonic.

Given any cost-sharing method ξ, one can define now parametrically the mecha-
nism below for determining who receives service along with the cost-shares. In the
description below, we let b = (b1, ..., bn) be the agents’ bids for their demand sets.
Mechanism M(ξ) (given a cost-sharing method ξ(·, ·)):

– Start by trying to serve all agents, with cost-share ξ(j,N). Remove any agent who
cannot cover his share, i.e., anyone for which bj < ξ(j,N). If no-one is removed
in this step, stop here, otherwise let R1 be the set of remaining agents.

– Check if we can serve R1 with a cost-share of ξ(j, R1) for every j ∈ R1. Again
remove those who cannot afford this price.

– Continue like this and in every round obtain the set Rt+1 = {j ∈ Rt : bj ≥
ξ(j, Rt)}.

– Stop either when we reach the empty set, or when we reach a set in which all agents
can afford to pay their cost-share.

The mechanism M(ξ) has some interesting theoretical properties. The following
theorem is a straightforward extension of the results from [9, 10] to our setting.

Theorem 1. For any cross-monotonic cost-sharing method ξ, the MechanismM(ξ) for
single-minded bidders is budget-balanced and group-strategyproof.

Further important properties of this family of mechanisms are obtained in [9, 10].

Altruistic budget-balanced mechanisms towards higher social efficiency In the
context of selling sensor information, one drawback with the Moulin-Shenker mech-
anism is that it rejects people, at the very first moment where the mechanism realizes
that they cannot pay their share. This may affect negatively the sustainability of the
market and lead to suboptimal generated welfare. Since it is important for the market
operator to maintain an up-and-running market, one idea that can be particularly useful
is to let ”richer” buyers subsidize poorer ones using their left-over money. One can start
from the most naive idea where in the first step of the mechanism M(ξ), we look at
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each person who cannot afford to pay his share ξ(j,N) and check if the buyers with
high enough value can cover the missing amount. We can then consider more and more
complex variants of altruism. The incentive for a rich customer to subsidize poorer ones
is that it increases the demand in the system and hence reduces the average cost of sen-
sor access. At an equilibrium, we expect users to subsidize others when the marginal
long term benefit from doing so equals their average reduction of surplus. This justifies
the use of altruistic mechanisms.

Clearly, we need to be aware that we lose now the property of strategyproofness.
This may not be so important for practical considerations (since in practice strate-
gyproofness is considered to be a strict requirement). But there are more issues that
arise from the fact that customers have different types of demand. In particular, con-
sider a customer j who can afford to pay his initial share ξ(j,N), as determined by
M(ξ). Consider also a customer k who cannot afford his share. If S(j) ∩ S(k) = ∅,
then there is no reason for j to subsidize k from his left-over money. On the other hand
for customers with S(j) ∩ S(k) 6= ∅, j can consider such a subsidy, as this will help
him obtain his tuple at an earlier round of the mechanism, and thus at a cheaper cost.
Hence, there are certainly instances where some agents have incentives to help other
people. The decision problem now that arises is to pick appropriately which customers
get subsidized since there can be multiple agents who cannot pay their share.

Based on these ideas, we have come up with a subsidy-based variant of M(ξ),
which we denote by ALT. ALT starts just like M(ξ) and initially determines the shares
ξ(j,N), attempting to serve all agents. In each round, the mechanism tries to subsidize
the ”poor” agents in increasing order of the least missing amount. For each of those, a
list of potential subsidizers is created. An agent j is included in the list for subsidizing
agent k, only if S(j) ∩ S(k) 6= ∅. Then, for each of the ”poor” agents we divide
the missing amount among the potential subsidizers, either in an egalitarian manner or
proportionally to the number of common sensors with the poor agent (the former is used
for our experiments). If the subsidy share cannot be paid by all subsidizers, we take the
most out of the ones who cannot pay their full share, and divide among the rest the
remaining amount. Then we continue to the next rounds, in the same manner as M(ξ),
Finally, we also return the subsidy-shares back to the subsidizers if the agents that they
tried to subsidize are kicked out in subsequent rounds.

Mechanisms for maximizing social welfare - The Marginal Cost Pricing Mecha-
nism The mechanisms described so far are budget-balanced. It is known however that
such mechanisms do not maximize the economic efficiency of the system, i.e., they may
result in suboptimal social welfare, due to the impossibility results of [4, 13].

To define social welfare formally, suppose that a set R is chosen as the set to be
served. If u is the utility vector of the agents, then the generated social welfare is:

SW (R,u) = uR − C(R) (4)

where uR =
∑

i∈R ui. The optimal social welfare that can be achieved is

SW ∗(N,u) = max
R⊆N

[uR − C(R)] , (5)

We also denote by R∗(N,u) the set of customers that achieves the maximum welfare
(in case of multiple optimal sets, we can pick one according to some tie-breaking rule).
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The standard way to have strategyproof mechanisms that achieve optimal welfare
is by using the family of Groves mechanisms[15, 2, 5] in the cost-sharing setting. In
particular, we will utilize the pivotal mechanism [2], and in this context, following [10],
we will refer to it as the Marginal Cost (MC) mechanism. The MC mechanism takes as
input by each agent his demanded set S(j) and his declared utility bj , and first solves
(5) to compute a set to be served with optimal welfare. Then, for the customers that
receive service in the optimal solution, i.e., for j ∈ R∗(N,b), it charges as follows:

pj = bj − (SW ∗(N,b)− SW ∗(N \ {j},b)) , (6)

It follows immediately by the results on Groves mechanisms, that MC is a strategyproof
mechanism. As already pointed out, by the impossibility results mentioned earlier, MC
is not budget-balanced, and the amount collected is at most equal to the total cost.

The difficulty in applying MC in practice is the computational complexity of solv-
ing (5). We are not aware of an efficient algorithm for solving large instances of (5). For
small instances (with 20-25 buyers), we have implemented a brute force algorithm to
run the MC mechanism. For larger instances however, we need to develop some heuris-
tics or approximation algorithms. A drawback with using a heuristic to approximately
solve (5), and then run the payment scheme of (6), is that strategyproofness does not
hold any more. Nevertheless, it is still interesting to have mechanisms that produce ap-
proximately optimal welfare, since welfare maximization is an important problem on
its own. Furthermore, when we run a heuristic, the payment scheme still makes it hard
for buyers to manipulate the mechanism. Thus, we expect that buyers will most likely
behave truthfully even under these heuristic variants of MC.

For large instances, the first natural heuristic approach that comes to mind is to start
from an empty solution and gradually produce a feasible one as follows:

Hadd (Greedy Heuristic starting from the empty set)
Initialization: Start with R = ∅, SW (R,u) = 0.
In every round: See if there exists some buyer j such that adding j to R (weakly)
increases the current social welfare. If yes R := R ∪ {j}. If no such buyer exists, then
stop and return R, with a social welfare of SW (R,u).

The instances in which Hadd may fail to produce any positive welfare is when there
is no person j who can cover the cost of his set S(j) on his own. In that case Hadd will
not add any person to the solution in the beginning, and will result in zero welfare. To
remedy this, we also propose a second heuristic, where we start from the whole set N
with an initial welfare of SW (N,u). In each round we can then check if there is any
agent whose removal increases the social welfare. We can repeat this until no further
removal is possible. We refer to this heuristic asHsub. Finally, we can also pick the best
out of the two heuristics. Hence, our third and final heuristic algorithm, which we refer
to as Hmax, is to run both Hadd and Hsub and then pick the solution with the highest
welfare: Hmax := max{Hadd, Hsub}.

4.2 Scenario 2: Elastic demand for multiple tuples of the same basic types

This scenario is orthogonal to Scenario 1 in the following sense: all bidders now have
the same type of demand, i.e., they all ask for the same type of tuple, and they are still
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inelastic as in Scenario 1, regarding the type of tuple. What differentiates the buyers
in this setting, is that each buyer j also specifies a maximum number, mj , of tuples
that he is interested in acquiring. The demand mj is elastic in the sense that buyer j
does not mind receiving a number of tuples less than mj . Along with the parameter
mj , each customer also specifies his willingness to pay for each tuple. This is encoded
by a vector of marginal utilities uj = (uj(1), uj(2), ..., uj(mj)), where uj(`) ∈ R+

denotes the marginal utility of receiving the `-th tuple after already having received
` − 1 tuples, with ` ≤ mj . Thus, the maximum amount each buyer is willing to spend
is
∑

`≤mj
uj(`). If an agent declares a (not necessarily truthful) willingness to pay bj ,

this means that if a mechanism gives him r tuples, with 0 ≤ r ≤ mj , his willingness to
pay for these tuples is perceived by the mechanism to be

∑
`≤r bj(`).

In a similar way as in Scenario 1, we have implemented three classes of mechanisms
as well. We describe these in Appendix A, highlighting also some differences with
Scenario 1.

5 Experiments

5.1 Evaluation Criteria

One of the main goals of our work is to provide experimental evidence on the perfor-
mance of the suggested mechanisms. The main issues that investigated are:

1. Can we argue about the success of the system in satisfying the customers, which
would consequently lead to its sustainability in the long run? We deal with this
issue by considering the satisfaction from the market operation and the probability
of having a successful market transaction, i.e., the percentage of customers whose
request was satisfied. Other indicative metrics are the number of sensors activated
and the total utility generated.

2. How far from budget-balanced can the MC mechanism be in these settings? We
know that MC may often run a budget deficit and we therefore want to evaluate the
percentage of cost that is covered by MC.

3. How far from the optimal welfare is the welfare produced by the mechanisms
M(ξ), M2(ξ) and ALT? This question is orthogonal to the previous one.

4. Particularly for Scenario 1, we also evaluate the proposed heuristics.

5.2 Setup - Data generation

All the implementations were carried out in Matlab (data available on request). To test
the mechanisms, we produced numerous instances using various distributions on certain
parameters. The number of buyers in our simulations ranged from 5 to 300, apart from
the MC mechanism in Scenario 1, which we had to run for only up to 20-25 buyers,
since it involves a computationally intensive algorithm. A typical range that we used
for the number of basic sensor types, i.e., for |I|, was the set {5, ..., 10}, reflecting
the typical number of sensors available in current devices. For Scenario 1, we used
a Gaussian distribution to determine the tuple S(j), so that most buyers demanded a
tuple with neither too many nor too few sensors. After selecting the sets S(j) for each
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j, we select the associated utility value uj . In particular, the utility of each buyer j
with |S(j)| = k was randomly selected in the interval [0, k · Bmax], where Bmax is a
parameter of the system. We generated 3 families of instances regarding the utilities. In
the first one, utilities were uniformly distributed in the above intervals for every value
of k. In the second, and third, we had a biased separation between ”poor” and ”rich”
buyers, where for the poor (resp. rich) ones, the utility was drawn uniformly from the
first half (resp. second half) of the interval. The second family contained p = 70%-80%
poor buyers and the rest were rich, and we had the exact opposite separation for the
third family. Note also that the first family corresponds to an even mix of poor and rich
buyers with p = 50%.

The prices of the suppliers for each of their sensors are produced from the uniform
distribution in [0, Rmax], where Rmax is the max. price a supplier could ask for each
sensor. In order to relate the prices of the suppliers to the buyers’ willingness to pay,
and their demand, we employed a parameter α, which we call the economy factor. This
is used in determining the max. price asked by the suppliers by means of the following
equation:

|I|Rmax

2
= α · (|N | ·Bmax ·

p+ 3r

4
), (7)

where, p, r = 1− p are the percentages of poor and rich buyers respectively. Note that
the lefthand quantity is the average total amount of money requested by the suppliers,
while the term multiplying α in the righthand side is the average total willingness to pay
for the buyers. Thus, a large (resp. a small) value of α implies that sensors are expensive
(resp. affordable).

The experiments’ setup for Scenario 2 was similar. In this case, for each buyer j,
we determine values for the number of tuples wanted, mj , and the utility per tuple, uj .
We note that we focused on the special case of Scenario 2, where all marginal utilities
are equal. Again, we used uniform distributions as in Scenario 1, and considered an
analogous formula to (7) to determine Rmax.

5.3 Results

1. Market satisfaction ratio. We define this as the percentage of customers that are
offered service. The main conclusion is that ALT and MC achieve quite high satisfaction
ratios. This is not so much the case for the Moulin-Shenker based mechanisms. As we
see in Table 1, ALT and MC have a consistently better performance than M(ξ) and
M2(ξ). ALT clearly serves more poor users thanM(ξ), thus increasing the total number
of successful transactions; MC, being a mechanism that maximizes welfare, also results
in a high number of transactions. Thus, despite their nice theoretical properties, the
Moulin-Shenker based mechanisms may fail to ultimately promote participation.
2. Budget deficit of the MC mechanism. In Figure 1, we depict the percentage of the
cost that MC manages to cover for various simulation runs and values for the economy
factor α. By an average value for α, we mean values for which there is a satisfactory
number of transactions in the market. A high value signifies that sensor prices tend
to be high and not too many transactions take place. Our results reveal that the MC
mechanism covers on the average a small percentage of the actual cost, and thus it is
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Distribution Uniform More Poor More Rich
Scenarios Sc. 1 Sc. 2 Sc. 1 Sc. 2 Sc. 1 Sc. 2

M(ξ), M2(ξ) 55 79 58 67 71 90
ALT 93 91 94 89 94 96
MC 92 91 93 90 92 94

Table 1. Satisfaction ratio (percentage), for the 3 mechanisms, for various buyers distributions.

not appropriate to use it. In order to have a better variant of the MC mechanism, one
would need to impose some additional flat fee to the buyers so as to be able to cover on
the average the deficit generated by the standard MC. We leave the exploration of such
ideas for future work.

(a) Scenario 1.

(b) Scenario 2.

Fig. 1. Percentage of cost covered by the MC mechanism.

3. Welfare performance of M(ξ), M2(ξ), and ALT. We compared the social welfare
produced by M(ξ) and ALT against the optimal welfare, which we computed with a
brute-force algorithm. In Figure 2, we see that the altruistic mechanism significantly
outperforms the mechanism M(ξ). In fact, it is important to note that the altruistic
mechanism attains in many cases the optimal social welfare. The same conclusions
hold also for Scenario 2, and hence we omit the corresponding graphs.
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(a) Performance for average values of α.

(b) Performance for high values of α.

Fig. 2. Approximation of optimal welfare by M(ξ) and by ALT in Scenario 1.

4. Performance of heuristics in Scenario 1. In Figure 3 and Figure 4, which can be
found in Appendix B, we see that the heuristic Hsub, and consequently the enhanced
heuristic Hmax, performs much better than Hadd in terms of the welfare attained. This
is an interesting observation, since typically the design of greedy algorithms starts from
the empty solution and gradually builds a feasible solution, as Hadd does. For our wel-
fare maximization problem however, the approach of starting from the full set of buyers
as an initial solution and gradually removing buyers is a more appropriate algorithm.

5. Overall Conclusions. To summarize, the Moulin-Shenker based mechanisms did not
perform that well in terms of satisfaction ratio, while also attaining suboptimal social
welfare. MC, which is optimal in terms of welfare, has poor cost-covering properties,
which can be improved with the introduction of an additional fee. ALT seems to be a
mechanism that strikes a balance: it has good satisfaction ratio, very good approxima-
tion to the optimal welfare, and it is budget-balanced. The downside of ALT is that the
amount of subsidization required by a rich agent might be too high in some cases, at
least in the early stages of such a market before participation raises. We believe that
milder forms of subsidization (e.g., thresholds on the maximum imposed subsidy, or
using only a small percentage of agents as potential subsidizers, even on a voluntary
basis) can still be promising and are worth further investigation.
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6 Conclusions and Future Work

In this paper, we develop a framework for a market of information in participatory
sensing environments, as well as appropriate trading mechanisms for sharing the cost
of information among the buyers. We view our work as a starting point towards creating
actual marketplaces in such environments.The technical requirements for implementing
the proposed market in a real system have been defined and its implementation, in the
context of a bigger research initiative within our team, is on-going. There are plenty of
avenues for future work. One challenging direction is to investigate richer combinato-
rial demand domains. E.g., how do we design mechanisms when customers have more
complex demands such as multiple tuples from different subsets of basic sensor types.
Another is to have a more formal study of market sustainability. An initial approach to
this would be to consider a model where an application not served returns to the system
only with a certain probability. If we assume a constant rate of new apps coming to the
system, we could then compute the total rate of applications present and call a market
sustainable if this rate does not decrease. We leave for future work a formal study of
such issues.
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A Description of mechanisms for Scenario 2

Budget-balanced mechanisms The application of Moulin-Shenker mechanisms is not
any more straightforward in the case of elastic bidders. In Scenario 1, each set of cus-
tomers has a unique cost for satisfying its demand. In the case of elastic customers,
each customer j corresponds to a set of potential service levels (ranging from 0 to mj

tuples). Then, for a potential set of customers, each possible allocation corresponds to
an element of the cartesian product of the above sets. Hence, we cannot just run an ana-
log of the mechanism M(ξ) from Section 4.2 since at every step we would also need
to decide on the service level before determining the cost-shares. One could consider
all combinations of service levels to customers, and run M(ξ) for each such combi-
nation (and then choose the one that is more efficient). But this has prohibitively high
complexity to be run in practice.

Instead, we will still utilize the Moulin-Shenker approach but in a different manner.
We introduce first some notation. Let C(i) denote the total cost of the i-th cheapest
tuple. Recall that the sensors used in a tuple do not need to come from the same provider,
e.g., we can simply combine the cheapest sensor from every type requested to form
the cheapest tuple, and continue in this manner for the rest of the tuples. If tmax =
maxj mj , we can compute in this manner the first tmax cheapest tuples, which is all
we need3. The main idea now in the mechanism below is that we try to sell each tuple
separately using the Moulin-Shenker approach. In the description that follows, we let
(bj ,mj) be the declared request of agent j.
Mechanism M2(ξ) (given a cost-sharing method ξ(·, ·)):

– Run the mechanismM(ξ) from Section 4.1 to determine who receives the cheapest
tuple. We then remove all customers who were not selected to be served (those
customers will not be able to afford the next tuples anyway since they are more
expensive).

– For the surviving customers who spent less than their bid for the first tuple, bj(1),
we transfer any left over money to the next round (i.e., in round 2, their willingness
to pay becomes bj(2) + δ, where δ is what they saved from the first round).

– Continue with the next tuple in the same manner, and at the beginning of round
t, let Rt be the set of customers who i) have a request mj ≥ t, and ii) were not
removed in the previous rounds.

– Run M(ξ) to determine which customers from Rt will be allocated the t-th cheap-
est tuple. Again transfer any left over money to the next marginal bid.

– Stop either when Rt = ∅, or when t > tmax.

In our experiments, we use as a cost-sharing method the egalitarian one as before,
where at round 1, we split the cost C(1) of the cheapest tuple equally among all cus-
tomers chosen to receive it by M(ξ). We then split C(2) among the remaining cus-
tomers who survive round 2, and so on and so forth.

The mechanism M2(ξ) is budget-balanced by its construction, but unlike M(ξ) in
Section 4.1, it is not group-strategyproof.

3 Recall that as we discussed in the beginning of Section 4, we assume that there are at least
tmax available tuples.



16

Budget-balanced mechanisms under the altruistic framework As in Section 4.1,
we have implemented an altruistic variant of the mechanism M2(ξ). In this scenario,
the algorithm tries to subsidize first those agents who cannot even afford to buy the
first (cheapest) tuple. Again we consider the agents in increasing order of their miss-
ing amount. The algorithm is now simpler than in Scenario 1, because all buyers are
interested in the same type of tuple, hence all rich enough buyers can be in the list of
potential subsidizers. In the same fashion, we check in each round if we can subsidize
remaining agents who cannot afford one more tuple. We omit further details to the full
version.

Strategyproof mechanisms for maximizing social efficiency Coming to strategyproof
mechanisms, and in analogy to Section 4.1, we have implemented the MC mechanism
in this setting as well. Unlike Section 4.1, in Scenario 2, there is no need for heuristics
since there is an efficient algorithm for computing the optimal welfare. The important
property that allows for efficient computation is that once we decide for allocating a tu-
ple, we do not lose by giving the tuple to all customers who have demand for it, since we
are only adding more utility to the current welfare, (utility functions are non-decreasing
in the number of tuples acquired). The optimization problem then becomes

SW ∗(N,u) = max
1≤k≤tmax

[
∑
j∈N

min{k,mj}∑
`=1

uj(`)−
k∑

i=1

C(i)] (8)

We can solve (8) simply by trying all values for k. Clearly all involved quantities can
be computed efficiently. Hence we have:

Theorem 2. The optimal social welfare can be computed in polynomial time.

Applying now the MC mechanism is straightforward and follows the same reason-
ing as in Section 4.1.
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B Experimental Results on Social Welfare Approximation in
Scenario 1

In this Section we provide the missing figures regarding the performance of the heuris-
tics in Scenario 1, for approximating the optimal social welfare. Comments on the sim-
ulations can be found in Section 5.3.

Fig. 3. Welfare approximation for small number of buyers (compared with the optimal welfare).

Fig. 4. Comparing Hadd, Hsub for large numbers of buyers.


