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Abstract. We analyze the interplay between the demand for downloads,
choice of congestion control mechanism, and tariff structure at a single
link, when users have preferences in terms of average download delay and
they are charged according to the number of ECN marked packets they
receive. Our model involves a timescale separation approach, where in the
fast timescales active flows compete for instantaneous bandwidth share
by optimally tuning congestion control parameters in a noncooperative
fashion. This is modeled by letting flows choose utility functions within
the network utility maximization framework laid down by Kelly [1]. On
a slower timescale, users selfishly change their otherwise unrestricted de-
mand for downloads based on the average experienced download delay
and charges incurred. We study the equilibrium of this loop of interac-
tions from the point of view of social welfare.
For homogeneous users we find that optimal equilibria are induced when
they choose among linear utility functions, while this is not the case for
logarithmic, i.e., proportionally fair congestion controllers. We next con-
sider two types of users, web-browsing and bittorrent, where the latter
are much less sensitive to download delay than the former. If bittorrent
users respond to congestion according to proportionally fair utility func-
tions the charge induced by ECN marked packets does not provide the
correct signal for service differentiation and the resulting equilibrium is
suboptimal. On the other hand, if flows are charged for the volume of bits
they transfer as well, then social welfare maximum is attained for some
price per bit. This reveals a new role for bit volume pricing: to provide
bittorrent users the correct incentives for choosing congestion controllers
that effectively give priority to web-browsing users.

Key words: pricing, congestion control, congestion marks, noncooper-
ative equilibrium.

1 Introduction

In analyzing the performance of congestion control mechanisms through either
simulation or theory, one assumes a given level of demand. But if we are asked
to answer questions such as



2 Costas Courcoubetis and Antonis Dimakis

– What is the impact of different tariffs on user-perceived performance and
Internet service provider (ISP) profits?

– Given a specific tariff, what congestion control algorithm should a user use
in order to improve performance and charges his traffic incurs?

– Is it beneficial for an ISP to buy more link capacity from a wholesale
provider?

– What is the outcome of competition between ISPs?

then we need to precisely determine the equilibrium level of demand that re-
sults from the complex interactions between ISPs, users and congestion control
algorithms.

Indeed, a user may improve his download delays by using a more aggressive
congestion control algorithm but will be charged more by a tariff scheme that
penalizes congestion. Hence this user must optimally balance his preference for
short download delays with the level of charges he incurs. If he discovers that
despite the optimal choice of congestion control he pays more than he ought to for
the download delay he experiences, he might lower his frequency with which he
is initiating downloads. On a much slower timescale, the ISP may notice a drop
in demand and may need to lower its price in order to maintain its previous level
of profits. In turn, the user will observe the price drop and will again reconsider
his choice of congestion control aggressiveness and so on.

Hopefully, given enough time this loop of interactions will converge to some
noncooperative equilibrium level of demand as a result of the tariff structure
employed by the ISP, and the choice of congestion control algorithms users are
optimizing their aggressiveness over.

In search for a tractable model for exploring equilibria of this sort, we isolate
three timescales and consider the relevant stakeholders and their actions involved
in each of these timescales.

– ISP chooses prices (of marks/bits or something else), expands capacity [slow
timecale]

– Users decide whether to download or not, what congestion control parame-
ters to use. [medium timescale]

– Congestion control reacts on instantaneous congestion. [fast timescale]

There are decisions taking place on even slower timescales, e.g., users change
congestion control algorithms, switch between providers, operating systems ven-
dors publish their congestion control software, but we have decided to omit those
in order to make the analysis tractable. In fact, in this paper we consider the
case of a single bottleneck link with fixed capacity.

Our main goal is to understand the incentive properties of pricing when
this is based on primal congestion control algorithms, i.e., based on volume
of ECN marked packets (congestion marks) [3], versus pricing based on data
volume or on combinations of both. Our basic modelling assumption that is
used to carry out the above analysis is that network users are separated into two
different classes: the ‘web-browsing’ users class, where latency in downloading
files is important, and the p2p users, the ‘bittorrent users’, for which downloading
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delay is orders of magnitude less important. Using this separation assumption
we look at the sequence of systems when delay importance on bittorrent users
becomes negligible and study the efficiency properties of the equilibria as this
limit is reached. A main result of this analysis is that if bittorrent users choose
among α-fair utility functions with α > 0 [2], such as logarithmic, the charge
induced by congestion marks alone does not provide the correct signal for service
differentiation and the resulting equilibrium is suboptimal. This results from
our assumption that the demand for downloads is potentially unrestricted, and
sensitive to the download delay. Under this assumption, as we will see later, it
is possible that an increasingly high number of bittorrent users joins as their
delay sensitivity decreases. Thus bittorrent flows accummulate a non-negligible
number of congestion marks. In contrast, consider what happens when demand
for bittorrent downloads is fixed. Bittorrent users will not be willing to incur
any congestion marks as they become less sensitive to delay.

Now if flows are charged for the volume of bits they transfer as well, then
social welfare maximum is attained for some price per bit. This reveals a new
role for bit volume pricing: to provide bittorrent users the correct incentives
for choosing congestion controllers that effectively give priority to web-browsing
users.

We must finally comment that our results are asymptotic results when In-
ternet users can be abstracted into two classes regarding their delay sensitivity.
Probably our results may not hold when we add another user type whose delay
sensitivity goes also to zero but at a slower rate than the bittorrent type. How-
ever, it is under the two type model where the properties we bring out become
most apparent.

The paper is organized as follows. In Section 2 we relate our work to previous
work done in the area. In Section 3 we introduce the model and notation to be
used throughout the paper, and define the concept of equilibrium. The main
results concerning social welfare of equilibria under a single and multiple user
types are contained in Sections 4 and 5 respectively. Finally, we summarize in
Section 6.

2 Related Work

In an important paper Naor [4] has posed the question of noncooperative equi-
librium arrival rate in a FCFS queue, and considered the case where an arriving
customer knows the queue length and is allowed to balk. He showed that the
equilibrium is inefficient in terms of social welfare if no pricing is imposed, and
this is fixed when an appropriate toll is imposed on non balking customers. The
same model under the assumption that customers do not observe the queue
length is considered in [5] and similar tolls to [4] were proposed. Such tolls that
internalize externalities were well known to economists and queueing theorists [6,
7]. In Section 5 the bit volume charge will have a similar internalizing role, in
the case of two extreme user types.
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Another way to internalize externalities without the imposition of tolls is
by changing the service discipline. In an intriguing result, [8] has shown that
the LCFS service discipline provides the correct incentives for customers to op-
timally balk. Another important result by [9] has shown that if customers bid
for their priority so that the higher bidder gets full priority, then the resulting
equilibrium is efficient. Such a combination of bids and service discipline, as
we will see, corresponds in our framework to a particular choice of congestion
control parameters by the users. One can view the results of this paper as an
extension of the demand models of [4, 5, 9–11], where users are allowed to bid
for instantaneous service in a very general way.

Kelly and Gibbens in [3] view the choice of congestion controller by the end-
to-end users as a game between them, where users have preferences in terms of
instantaneous bandwidth. Additionally, they propose flows to be charged propor-
tionally to the amount of ECN marked packets they generate. In contrast to [4,
5, 9–11], the flow arrival rate is fixed, i.e., balking is not allowed, but flows affect
the service discipline by tuning the parameters of congestion control algorithms.
The ECN mark charge offers a way to provide service differentiation since at
times of high congestion, bandwidth is allocated to the flows that value it most.
Interestingly, when balking is allowed a mark charge may not be sufficient to
achieve the maximum social welfare (see Section 5). Inefficiency of Nash equilib-
ria resulting from the noncooperative choice of congestion control parameters, is
observed in [12, 13] when users have preferences on instantaneous bandwidth. In
contrast to the models of [12, 13], here inefficiency can arise even when all users
are of the same type.

References [14, 15] consider whether class differentiated pricing at a queueing
system offering two classes of priority, gives the correct incentives for customers
to select the appropriate class. It is found that this is possible under identical
service requirements by all customers. Although we seek for similarly defined
efficient equilibria as in [14, 15], here prices are not set by a central planner but
they result from user choices. Thus, potentially there is an infinite number of
service classes.

3 Model

Consider a single link of capacity C bits/s shared by n flow types. We assume that
there is an arbitrarily high number of flows where each decides whether to join
the system or balk in a random (e.g., after a coin toss) and independent manner.
We further assume that flows possess no information about the actual state of
the system, e.g., the number of active downloads. The only information available
to them is the number of flow types along with their defining parameters. That
is, we consider a nonobservable model according to the terminology in [11].
Thus after each flow has made its decision, the resulting arrival process of type-i
flows forms a Poisson process with rate λi flows/s. Each nonbalking type-i flow
terminates once the download of an exponentially distributed file size of mean
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1/µi bits completes. We use θi to denote the demand λi/µi (in bit/s) of type
i-flows.

A nonbalking flow, at the instant of its arrival, also decides which con-
gestion control mechanism to use throughout its duration. Since we are in-
terested in the (fast timescale) equilibrium service rates, congestion control
mechanisms are modeled by nondecreasing concave functions and the use of
the convex optimization framework of Kelly [1] to determine the equilibrium
allocations which we assume are reached instantaneously. We allow a random-
ized choice of congestion control mechanisms, so the choice is over the set P(U)
of distributions on U , a subset of concave, nondecreasing, continuously differ-
entiable utility functions. We will frequently consider U = Uα, the set of α-
fair utilities {u : u(x) = −wx1−α/(1 − α),∀x > 0, and some w ≥ 0} with
α ≥ 0, a 6= 1 [2]. The case α = 1 corresponds to instantaneous bandwidth al-
locations that are (weighted) propoportionally fair [1], and can be defined by
U1 = {u : u(x) = w log x, ∀x > 0, and some w ≥ 0}; here, the gain parameter w
is interpreted as the willingness to pay per unit of time [1]. Since for fixed α, the
elements of Uα are indexed by the gain parameter w ≥ 0, we can take P(Uα) to
be the set of probability distributions on R+. We also introduce the relation >
on P(U), defined by

π1 > π2 ⇔ (π1 × π2)({(u1, u2) ∈ U × U|u′1(x) > u′2(y) for all x, y > 0}) = 1 .

This is defined to signify that the flows of some type take full priority over flows
of another type. Moreover, P(U) is equipped with the Prohorov metric, i.e.,
πn → π means weak convergence of probability distributions.

If at any instant t, a flows are active with utilities u1, . . . , ua, then the in-
stantaneous bandwidth share xj(t) (in bit/s) of flow j = 1, . . . , a is determined
by the optimum solution of

max
x1,...,xa≥0

a∑
j=1

uj(xj) over
a∑
j

xj ≤ C ,

and the instantaneous charge rate is λ(t)xj(t) per second, where λ(t) is the
Lagrange multiplier of the capacity constraint. In [3] it is demonstrated how the
rate of congestion marks conveys the value of the Lagrange multiplier λ(t), so,
as in [3], in the sequel we identify congestion mark pricing with the imposition
of a charge λ(t) on each unit of allocated bandwidth. Thus, during the lifetime
of a flow an average charge per bit equal to

mi(θ, π) = E0

(∫ T

0

λ(t)xj(t)dt

)
µi ,

is incurred, if flow j is of type-i and T its download delay. Here, E0 is expectation
under the Palm distribution P 0 on arrivals of type-i flows, i.e., P 0 characterizes
statistically what is seen by a typical arriving type-i flow.

Let di(π′; θ, π) be the average download delay of a type-i flow divided by the
average file size, i.e., 1/µi, when this flow chooses congestion control mechanism
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according to π′ ∈ P(U) and all other flows (including those of the same type)
choose according to π = (π1, . . . , πn). (mi(π′; θ, π) is defined similarly.) Thus
di(πi; θ, π) is the average delay per bit of a typical type-i flow, which we denote
simply by di(θ, π). For α-fair utility functions we conveniently write di(w; θ, π)
for di(δw; θ, π) where δw ∈ P(Uα) assigns unit probability to the utility function
in Uα with parameter w. (The value of α will be clear from the context.) Each
type-i download brings a reward ri − cidi(θ, π) per bit, where ri represents a
delay independent reward, and ci is the cost of each second of delay per bit.
Consequently, the net value per bit of a type-i flow is

ri − cidi(θ, π)−mi(θ, π) (1)

Since the maximum potential demand for each flow type is arbitrarily high, if (1)
is positive more type-i flows will join and ultimately drive (1) to zero after delay
increases sufficiently. This gives rise to the following definition.

Definition 1. For each i let Ai be a subset of P(U), where U is the set of
nondecreasing, concave, continuously differentiable functions on R+. The vector
(θ, π) is an equilibrium if the following hold for all i:

1. ri − cidi(θ, π)−mi(θ, π) ≤ 0. If the inequality is strict then θi = 0.
2. πi maximizes ri − cidi(π′; θ, π)−mi(π′; θ, π) over π′ ∈ Ai.

In our model θi is the result of a Wardrop type of equilibrium that is induced
by (1), hence it is outside the control of the individual user; the choice of πi
is strategic. We have not developed a theory for existence and uniqueness of
equilibria in general. In what follows we deal with specific U where explicit
calculation of equilibria is possible.

To any vector (θ, π) irrespective of it being an equilibrium or not, we associate
a level of social welfare equal to

W(θ, π) =
n∑
i=1

θi(ri − cidi(θ, π)) . (2)

A vector (θ, π) is called efficient if it maximizes (2) over θ ≥ 0,
∑n
i=1 θi ≤ C, πi ∈

Ai.
In the following section we consider the simplest case of a system consisting

of a single user type. We consider this simpler case first in order to highlight
some key efficiency results.

4 Single User Type

Here we consider the case n = 1. The number of active flows behaves as an
M/M/1 queue, so d1(θ, π) = 1/(C − θ1) for any U and π ∈ P(U). Thus the
optimal demand θ∗1 maximizes θ1(r1 − c1/(C − θ1)), which gives

θ∗1 = max

(
C −

√
c1C

r1
, 0

)
. (3)
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Contrary to the case where the demand for downloads is fixed [1, 3, 13, 12], not
all congestion controllers possess efficient equilibria when users selfishly optimize
demand.

Proposition 1. 1. If A1 = P(U0) there exists a unique efficient equilibrium.
2. If A1 = P(U1) the only symmetric pure equilibrium is inefficient.

Proof. Part 1 is shown in [9]. The intuition of why this should hold is the follow-
ing. An arriving flow that picks a parameter value p will take preemptive priority
over all active flows with lower parameter values. Moreover, if the instantaneous
bandwidth at any time during the lifetime of the flow is nonzero, then the shadow
price will be exactly p. Thus, the equilibrium choice of parameter is such that
it does not pick any particular value with a positive probability, i.e., does not
have atoms, since an infinitesimally small parameter increase results into taking
priority over a positive number of flows, with positive probability. Hence, any
parameter p within some range will result into identical net values per bit (1).
Since this is true for the smallest p within this range, i.e., for the smallest pri-
ority, it is optimal for an arriving flow to join if and only if it is optimal to
join under the LCFS policy. But under such a policy a nonbalking flow does not
pose any delay penalties to subsequently arriving flows, and thus will join if it
is socially optimal to do so [8].

For the second part, let f(w) be the average delay per bit of a flow with
willingness to pay w when all other flows have a unit willingness to pay. By [10],

f(w) =
1 + w − wθ/C
1 + w − θ/C

1
1− θ/C

1
C
. (4)

If w∗ is the equilibrium willingness to pay then the maximum net value per bit
r1 − c1f(w/w∗)− wf(w/w∗) must be achieved at w = w∗, so

d

dw
(c∗1f(w/w∗) + wf(w/w∗))

∣∣∣∣
w=w∗

= 0 =⇒ w∗ = − c1f
′(1)

f ′(1) + f(1)
=

c1θ1
2(C + θ1)

.

Such payment will induce a demand θ1 with

r1 −
c1

C − θ1
=

c1θ1µ1

2(C + θ1)(C − θ1)
,

which clearly is not the optimal demand (3).

We conjecture that a similar inefficiency outcome as for U1 holds for any Uα with
α > 0. Congestion control mechanisms that correspond to the set U0 of linear
utility functions have been proposed in [1, 3, 16, 17].

5 Two Extreme User Types

Here we consider the efficiency of equilibria for two flow types, where one of
them is nearly insensitive to download delay. To do this, we consider a sequence
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of systems as the coefficient c2 of type-2 converges to zero and determine the
limit (θ0, π0) of equilibria (θc2 , πc2) of the c2-systems. Thus (θ0, π0) provides an
asymptotically exact approximation for c2 > 0, and it is easier to determine
than (θc2 , πc2) directly. We believe that the case n = 2, c2 = 0 provides valu-
able intuition for more general systems because the key properties become most
apparent.

We first determine the limit of the efficient allocation vectors as c2 ↓ 0. As
expected, it is optimal for the delay sensitive type to take full preemptive priority
at the limit. (To emphasize the dependence on c2 we write W(θ, π, c2) for the
social welfare when the linear coefficient of type-2 users is c2.)

Proposition 2. Let U be as in Definition 1. Then,

max
θ≥0,θ1+θ2≤C,π∈P(U)×P(U)

W(θ, π, c2)→W∗ , as c2 ↓ 0 , (5)

where

W∗ = max
θ≥0,θ1+θ2≤C,π∈P(U)×P(U)

[θ1(r1 − c1d1(θ, π)) + r2θ2]

= max
0≤θ1≤C

[
θ1

(
r1 −

c1
C − θ1

)
+ r2(C − θ1)

]
. (6)

Moreover, if maximizing vectors (θc2 , πc2) of W(·, ·, c2) have a limit (θ0, π0) it
must satisfy θ0 = θ∗. Also, θ01 > 0 =⇒ π0

1 > π0
2, where θ∗ is the optimizing

demand in (6).

Proof. For small but fixed ε > 0,

max
θ1+θ2≤C−ε,π

W(θ, π, c2)→ max
θ1+θ2≤C−ε,π

W(θ, π, 0)

as c2 ↓ 0. Moreover, the right hand side converges to W∗ as ε ↓ 0. Now, since

max
θ1+θ2≤C−ε,π

W(θ, π, c2) ≤ max
θ1+θ2≤C,π

W(θ, π, c2) ≤ W∗ ,

we conclude that (5) is true.
Now any limit demand θ0 equals θ∗ because (6) possesses a unique solution.

If θ01 > 0 but π0
1 > π0

2 does not hold then d1(θc2 , πc2)→ +∞ since θ01 + θ02 = C.
But this contradicts the fact that W(θc2 , πc2 , c2) ≥ 0, hence π0

1 > π0
2 .

Next, we would like to determine whether the tariff based on congestion
marks [3] is adequate to enforce socially optimal equilibria (θc2 , πc2) as c2 ↓ 0,
i.e., whether (θ0, π0) = limc2↓0(θc2 , πc2) = (θ∗, π∗) holds. As the next proposition
shows, (θ0, π0) is not efficient when A1 = P(Uα) for any α ≥ 0, and A2 = P(U1).
We conjecture that the same result holds for more general A2 except the case
A2 = P(U0). Although we do not fully determine (θ0, π0) we find that no limit
of the equilibria sequence (θc2 , πc2) can be efficient. This is surprising since if
demand was fixed, i.e., the maximum potential demand of both types is strictly
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below C, then as c2 becomes smaller, type-2 flows should be less willing to pay
for instantaneous bandwidth because these will be served anyway when no type-
1 flows are present, and this extra delay is bounded. Thus, type-2 flows will
become second priority at the limit c2 ↓ 0.

However if demand varies, then in systems with small c2, one may observe
a higher number of type-2 flows on the average, since more flows will join if
their payments draw close to zero. Thus at equilibrium, the net value per bit
will be close to zero as well. In other words, a tragedy of the commons situation
is plausible among type-2 flows. If on the other hand such a situation does not
arise and payments from type-2 flows come to the system at a positive rate, then
type-2 flows will take up some of the bandwidth during times when type-1 flows
are present. As c2 ↓ 0 this amount of bandwidth becomes non-negligible and the
system does not behave as a priority system as it is supposed to in order to be
efficient.

Proposition 3 (Inefficiency of tariff based on congestion marks alone).
Let A1 = P(Uα), α ≥ 0 and A2 = P(U1). If (θc2 , πc2) is equilibrium for each
c2 > 0 then

lim sup
c2↓0

W(θc2 , πc2 , c2) <W∗ ,

where W∗ is as in Proposition 2.

Proof. We follow the discussion prior to the statement of this proposition, and
first show that type-2 flows achieve a decreased level of welfare if their rate of
payments is not r2. Since 0 ≤ m2(θc2 , πc2) ≤ r2 we can take a subsequence of
(θc2 , πc2), which by abuse of notation we denote again by (θc2 , πc2), such that
limc2↓0m2(θc2 , πc2) = δ, and (θc2 , πc2)→ (θ0, π0).

As in the proof of Proposition 2 one can show that limc2↓0W(θc2 , πc2 , c2) =
W∗ implies limc2↓0 θ

c2 = θ∗. Moreover by Definition 1, r2 − c2d2(θc2 , πc2) ≤
m2(θc2 , πc2) for each c2, so if δ < r2 we have that

lim
c2↓0
W(θc2 , πc2 , c2) ≤ θ∗1(r1 − c1d1(θ∗, π∗)) + δθ∗2 <W∗ .

i.e., on this subsequence the system is inefficient.
Now consider the case where the payment rate is exactly r2, i.e.,

δ = lim
c2↓0

m2(θc2 , πc2) = lim
c2↓0

Ec2

(∑n2(0)
i=1 wi

)
θc22

= r2 ,

where n(t) = (n1(t), n2(t)) is the vector of active type-1 and type-2 flows at time
t, and wi is the congestion control parameter chosen by the i-th active type-2
flow.

We will show that type-1 flows see strictly larger average delays than what
they would observe at a priority system. Since a typical type-1 flow sees time
averages upon arrival, we have

lim inf
c2↓0

P 0
c2

n2(0−)∑
i=1

wi >
r2θ
∗
2

2

 > 0 ,
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where P 0
c2 is the Palm probability on arrivals of type-1 flows and the dependence

on c2 is shown explicitly. Now, define the following events:

F1 =


n2(0−)∑
i=1

wi >
r2θ
∗
2

2

 , F2 = {n1(0−) = 0} ,

F3 = {no type-1 flows arrive during (0,1]} ,
F4 = {no flows depart from the system during (0,1]} .

Now we can assume that limc2 P
0
c2(F2) > 0 holds, otherwise the limit is not

efficient and we are done. Moreover, limc2 P
0
c2(F3) = e−θ

∗
1µ1−θ∗2µ2 and

lim inf
c2↓0

P 0
c2(F4|F1, F2, F3) ≥ e−(µ1+µ2)C .

Thus,
lim inf
c2↓0

P 0
c2(F1 ∩ F2 ∩ F3 ∩ F4) > 0 . (7)

Let x1(t) be the instantaneous bandwidth at time t ≥ 0, allocated to the
type-1 flow arriving at time 0. On ω ∈ F1 ∩ F2 ∩ F3 ∩ F4 we have x1(t) =
x1(0), n(t) = n(0) for all t ∈ (0, 1] and x1(0) is given by the optimum x1 in

max
x1,x2≥0

u(x1) +
n2(0)∑
i=1

wi log x2 , over x1 + x2 ≤ C ,

which is less than the optimum x′1 in

max
x′1,x2≥0

u(x′1) +
r2θ
∗
2

2
log x2 , over x′1 + x2 ≤ C . (8)

Now lets compare the rate allocated to the type-1 flow that arrived at time 0
when type-2 flows give up priority. On the same probability space, consider a
second system with the same type-1 flow arrival instances, same file sizes, and the
same choice of utility functions but where type-1 takes full preemptive priority.
If we denote by n̂(t) = (n̂1(t), n̂2(t)) the vector of active flows at time t, and by
x̂1(t) the instantaneous bandwidth allocated to the type-1 flow that arrives at
time 0, then it is evident that n1(t) ≥ n̂1(t), x1(t) ≤ x̂1(t) at any t. Furthermore
at any time instant, any type-1 flow that is present at the priority system is
also present at the system without full priority. Now, on ω ∈ F1 ∩ F2 ∩ F3 ∩ F4

we have x̂1(t) = C for all t ∈ (0, 1]. Moreover, we need consider only u ∈ Uα
with (uniformly in c2) bounded gain parameters, since the charge per bit never
exceeds r1. So for any utility function u in (8), x̂1(t)− x1(t) > φ for some φ > 0
not dependent on c2. Thus for such ω, the delay of arriving type-1 flows is greater
than that achieved by full priority, by more than φ/C. As c2 ↓ 0, a non-negliglible
proportion of type-1 flows encounters a delay difference of φ/C, by (7). For the
rest of type-1 flows we know that their delay is at least as large as the one under
full priority in the coupled system. Therefore, the average delay of a typical
type-1 flow as c2 ↓ 0 is strictly greater than what the optimal allocation (6)
would result in.
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The inefficiency could be eliminated if prioritization and payments are linked
differently than by the congestion mark tariff. Indeed, in Proposition 4 we show
that when A1 = P(U0),A2 = P(U1) and a charge is imposed on the volume of
downloaded bits as well as on the volume of congestion marks, the system is
efficient in the limit as c2 ↓ 0. The intuition of why this is true is the following.
Suppose a charge vc2 is imposed on every bit carried by the link. Then, the net
value per bit of type-i becomes,

ri − cidi(θ, π)− vc2 −mi(θ, π) , i = 1, 2 ,

under any demand/parameter vector (θ, π). Also redefine the definition of equi-
librium such that part 1 in Definition 1 becomes “ri−cidi(θ, π)−vc2−mi(θ, π) ≤
0. If the inequality is strict then θi = 0.”. Now, if vc2 ≈ r2 then type-2 flows
have a very small margin for extracting value out of their bits. Thus, the charges
incurred by congestion marks should be kept small, and so type-2 flows have the
incentive of choosing low priority. On the other hand, since they pay a nonzero
price v for each bit, a tragedy of the commons situation does not arise.

We also observe that Proposition 4 may not hold for other A1 beyond P(U0).
This is because, by Proposition 2, efficiency implies that the system asymptoti-
cally behaves as a priority system, so the equilibrium demand reached by type-1
flows should be the same as in the single type case (see Section 4) for a delay
independent reward equal to r1 − vc2 ≈ r1 − r2 instead of r1. But as Proposi-
tion 1 shows, a choice of A1 = P(U1) would not generate the maximum welfare
for type-1 flows; one should have P(U0) instead.

Proposition 4 (Efficiency of two part tariff). Let A1 = P(U0) and A2 =
P(U1). For each c2 > 0 let (θc2 , πc2) be an equilibrium under bit price vc2 with
vc2 → r2, and (θc2 , πc2)→ (θ0, π0). The following hold:

1. If r1 > r2 then π0
1 > π0

2, π0
2({0}) = 1.

2. W(θc2 , πc2 , c2)→W∗ as c2 → 0, where W∗ is as in Proposition 2.

Proof. Since (θc2 , πc2) is an equilibrium for each c2, we have 0 ≤ m2(θc2 , πc2) =
r2−vc2−c2d2(θc2 , πc2) ≤ r2−vc2 . But vc2 ↑ r2, so E0

c2(wT )µ2 = m2(θc2 , πc2)→
0, where w, T is the willingness to pay and download delay of an arriving
type-2 flow at time 0. Since T ≥ Z/C where Z is the random file size, we
have E0

c2(w)/(µ2C) = E0
c2(wZ)/C ≤ E0

c2(wT ) → 0. Thus, πc22 → π0
2 where

π0
2({0}) = 1, i.e., as type-2 users become less sensitive to delay they tend to be

less aggressive. We now show that this is not the case for any significant propor-
tion of type-1 users by arriving at a contradiction. If π0

1({0}) > 0 then for any
γ > 0 there exists a sequence pc2 ↓ 0 with

r1−c1d1(pc2 ;πc2 , θc2)−vc2−pc2 = r1−c1d1(πc2 , θc2)−vc2−m1(θc2 , πc2) = 0 ,
and πc21 ((pc2 ,+∞)) ≥ 1− γ .

We show that a type-1 user is better off by choosing a constant parameter
ε > 0 for all c2 small enough. By Lemma 1 and the fact d1(pc2 ; θc2 , πc2) ≥
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d1(0; ((1− γ)θc21 , θ
c2
2 ), π0), we have

lim sup
c2↓0

[c1d1(ε; θc2 , πc2) + ε− c1d1(pc2 , θc2 , πc2)− pc2 ]

≤ c1C

(C − θ01π0
1((ε,+∞)))2

+ ε− c1C

(C − θ01(1− γ))2
. (9)

But π0
1((ε,+∞)) ≤ 1−π0

1({0}) < 1, so the right hand side of (9) is less than
or equal to

c1C

(C − θ01(1− π0
1({0})))2

+ ε− c1C

(C − θ01(1− γ))2
,

which is strictly negative for sufficiently small ε > 0 and some γ > 0. Hence for
such ε, γ

r1 − c1d1(θc2 , πc2)− vc2 −m1(θc2 , πc2)
< r1 − c1d1(ε; θc2 , πc2)− vc2 −m1(ε; θc2 , πc2) = 0 ,

for sufficiently small c2, which contradicts the fact that (θc2 , πc2) is an equilib-
rium for all c2.

We now proceed to prove part 2. If r1 < r2 then for all values of c2 for which
r1 < vc2 < r2, the equilibrium allocation θc2 = (0, C) is efficient. So assume
r1 > r2 in what follows. If 0 < r1− r2 < c1/C then again θc2 = (0, C) is efficient
since type-1 flows will never find it beneficial to join as it is optimal to balk
even at an empty system, so we are left with r1 − r2 > c1/C. By part 1 and
Lemma 2, (θ01, π

0
1) is characterized as the equilibrium that results when type-2

flows are absent, and the delay independent reward in (1) for type-1 users is
r1 − r2 (instead of r1 originally). Since A1 = P(U0), by Proposition 1 we have
that θ01 maximizes

θ1

(
r1 − r2 −

c1µ1

C − θ1

)
=W(θ1, C − θ1, 0)− r2C ,

with respect to θ1, hence θ01 = θ∗1 .

The next lemma shows that if the average rate of payments by type-2 flows
is negligible and they tend to choose less aggressive parameters, then they do
not interfere with type-1 flows in the limit.

Lemma 1. Under the assumptions of Proposition 4, for every p > 0

d1(p; θc2 , πc2)→ d1(p; θ0, π0) =
C

(C − θ01π0
1((p,+∞)))2

, as c2 ↓ 0 .

Proof. For fixed c2 we calculate the instantaneous bandwidth xi(t) allocated to
all type-i flows at time t when ni(t) type-i flows are present, for i = 1, 2. Further-
more, let p1, . . . , pn1(t) and w1, . . . , wn2(t) be the congestion control parameters
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chosen by the active type-1 and type-2 flows respectively. x1(t), x2(t) are given
by the optimal solution of the optimization problem

max
x1,x2≥0

 max
i=1,...,n1(t)

pix1 +
n2(t)∑
j=1

wj log x2

 , where x1 + x2 ≤ C .

For fixed but arbitrary δ > 0, x1(t) dominates x̂1(t) the optimum x1 in

max
x1,x2≥0

(
max

i=1,...,n1(t)
I(t)pix1 + δ log x2

)
, where x1 + x2 ≤ C .

where I(t) = 1 if
∑n2(t)
j=1 wj ≤ δ and zero otherwise.

Now,

Pc2(I(t) = 1) = 1− Pc2

n2(t)∑
j=1

wj > δ


≥ 1−

Ec2

(∑n2(t)
j=1 wj

)
δ

= 1− m2(θc2 , πc2)
δ

→ 1 ,

as c2 ↓ 0. Thus, most of the time the departure rate is no less than µ1x̂1(t),
which for small δ is arbitrarily close to C when n1(t) > 0. Hence, as c2 ↓
0 the distribution of n1(t) at stationarity converges to that of a birth-death
process with birth rate θ01µ1 and death rate C, and an arriving type-1 flow with
parameter p will see an M/M/1 queue with arrival rate µ1θ

0
1π

0
1((p,+∞)) and

departure rate µ1C. That is, it will have the least priority in this queue, and so

d1(p; θ0, π0) =
C(

C − θ01
∫∞
p
dπ0

1

)2 ,

using standard results for the M/M/1 queue.

The next lemma shows that the limit (θ0, π0) of equilibria as c2 ↓ 0, is itself an
equilibrium of a system where type-2 flows are completely insensitive to delay.
This permits a narrowing down of the possible limits by analyzing a simpler
system.

Lemma 2. Under the assumptions of Proposition 4, (θ0, π0) satisfies,

1. r1 − r2 − c1d1(θ0, π0)−m1(θ0, π0) = 0.
2. π0

1 maximizes r1 − r2 − c1d1(π′1; θ0, π0)−m1(π′1; θ0, π0) over π′1 ∈ A1.

Proof. By Lemma 1 and since π0({0}) = 0, we have

d1(θc2 , πc2) =
∫ ∞

0

d1(p; θc2 , πc2)dπc21 (p)→
∫ ∞

0

d1(p; θ0, π0)dπ0
1(p) = d1(θ0, π0),
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as c2 ↓ 0. Moreover,

0 = r1 − c1d1(θc2 , πc2)− vc2 −m1(θc2 , πc2) ,

for all c2, and m1(θc2 , πc2) =
∫
pdπc21 . Thus,

0 = r1 − c1d1(θ0, π0)−m1(θ0, π0) .

We now show part 2. We have,

r1 − c1d1(π′1; θc2 , πc2)− vc2 −m1(π′1; θc2 , πc2)
≤ r1 − c1d1(θc2 , πc2)− vc2 −m1(θc2 , πc2)

≤ r1 − c1d1(θc2 , π0)− vc2 −
∫ ∞

0

pdπc21 (p) .

Taking c2 ↓ 0 and using Lemma 1 yields

r1 − c1d1(π′1; θ0, π0)− r2 −m1(π′1; θ0, π0) ≤ r1 − c1d1(θ0, π0)− r2 −m1(θ0, π0) .

6 Discussion

In the simple model of this paper we find that congestion control mechanisms
coming from linear utilities have better properties than those based on loga-
rithmic (α = 1). The linear utility functions U0 correspond to the FileTransfer
algorithm in [3] and are used in [16, 17] along with slow timescale mechanisms
that vary the slope of the linear utility according to user preferences over average
rates rather than instantaneous one. But in practice, users decide whether their
flows join or balk on the basis of some knowledge of the state, e.g., congestion
level. Models allowing this type of information are surveyed in [11] and may
prove helpful in the context of this paper.

Notice that logarithmic utility functions produce inefficient outcomes when
users have linear valuations in average download delay. But this does not im-
mediately imply the inadequacy of similarly behaving algorithms such as TCP.
Since users might value higher moments of delay as well, e.g., variance, it will
be interesting to account for these as well.

The existence and uniqueness of equilibria when utility functions vary over
larger sets is an open problem, even in the single type case. For linear and
logarithmic utility functions existence is shown by explicitly computing the effect
of different parameters on net value per bit. For general utility functions we
expect that more general methods such as fixed point theorems will prove fruitful.

Finally, in this paper we have not determined the welfare loss of inefficient
outcomes. It is an open problem whether similar statements as in [12] regarding
the price of anarchy, hold in the present model.
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