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Abstract

We consider a model in which wireless LANs are to be provided in a number of
locations. The owners of these WLANSs have decided to peer with one another so that
they can roam in locations other than their own. We address the question of designing
a mechanism for deciding the quantities of resources that agents should provide so that
the qualities of service are achieved in the locations and a measure of expected welfare
is maximized, subject to the mechanism being incentive compatible, rational and feasible
(in senses to be described). We show that as the number of participant becomes large
there is a limiting problem, whose solution takes a simple form. For instance, it is near
optimal to set a fixed fee and allow a participant to use the WLANSs in other locations
when roaming if he is willing to pay this fee. The advantage of this is that the provisioning

policy and fee structure can be easily communicated to the participants.

1 Peer to peer networks of wireless LANSs

Access to the Internet is still not as ubiquitous as access to the telephone network. This greatly
reduces the economic value of many new portable devices, such as PDAs, tablet computers

and smart-phones running the TP protocol. The users of these devices would benefit greatly
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from cost-effective Internet access that is wireless, always-on, ubiquitous and high-speed.
However, deploying infrastructure with wide enough coverage to support this is a non-trivial
task, especially from the business perspective.

Wireless Local Area Networks (WLANSs) are an important developing infrastructure.
Specifically, the IEEE 802.11 WLAN standard has grown steadily in popularity since its
inception and, at least in metropolitan areas, is now well positioned to complement much
more complex and costly technologies such as 3G. This is already happening. WLAN signals
of networks set up by individuals for their own use already pervade many cities and such
WLAN c‘cells’ frequently cover greater areas than was originally intended. at their instal-
lation. Given how easy it is to gain access to a WLAN once a potential user is within its
coverage area, and leaving out the obvious security issues involved, one wonders if individuals
could share such infrastructure amongst themselves to achieve ubiquitous Internet access.
Sharing comes as a natural idea since WLANSs provide large amounts of bandwidth that is
mostly underutilized by its local users. Also the pipe that connects the local WLAN users
to the Internet is usually of a broadband nature (DSL) and may also be under-used over
large time periods. Existing technology allows (or will soon allow) WLAN administrators to
control access to their networks and to limit the consumption of network resources by remote
(roaming) users.

In this paper we develop an economic model for sharing resources among WLANs. As
in existing peer-to-peer (p2p) file sharing systems, such as Gnutella and Kazaa, individual
WLAN owners may decide to join the peering group, and abide by certain rules that are
imposed by the system in respect of the amount of resources they must contribute. No
central entity controls the interaction between the peers, each of whom has full control of his
own participation level in the community. Our aim is to optimize these participation rules
in order to maximize economic efficiency and reduce free-riding. If there were no such rules,
the free riding problem would be debilitating, as each WLAN would offer no resources to
others (in order to minimize its own cost, i.e., not decrease the quality of the service provided
to its own local customers), while trying to consume as much as it can of the resources

of peering WLANs (when roaming in remote areas). Altruism can go some way towards



ameliorating this inefficiency, and this may partly explain why existing p2p systems (such
as Gnutella and Kazaa) operate with some degree of success, even though studies indicate
that the majority of the users are free riders (see Adar and Huberman (2000) and Saroiu
et al. (2002)). However, we do not expect that altruism alone can completely correct such
inefficiencies. Ubiquitous connectivity is a public good, but We suppose that each peer’s
preferences (the values he place on connectivity) is known only to himself. The problem
is one of ‘mechanism design’: to determine rules on the peers’ contributions and usages
so as to maximize social welfare. It is extremely complicated to determine the optimum
contribution policy under appropriate informational participation constraints. (the ‘second-
best’ in mechanism design terminology). In general, the contribution required of a peer may
depend on the preference declarations of all the other peers and a central planner is required
to implement it. Our main result is that as the number of participants in the system becomes
large, the optimal contribution policy may be approximated by a simple fixed-fee rule. This
may have important practical implications. A peer who wishes to roam must contribute a
fixed amount of resources (such as coverage area, the number of roaming peers he accepts
in his own WLAN, or a monetary payment). This fee can be computed off-line before the
system is instantiated. Note that existing p2p file sharing applications have recently started
to incorporate system-specific rules. In most cases these rules are very simple. In Kazaa
for example, each peer has an associated ‘participation level’. When two peers try contend
for downloading a file then the peer with the higher participation level has priority. A peer
can increase his participation level by increasing the amount of megabytes that other peers
download from him, or by ‘integrity-rating’ the files he shares.

The idea of creating a p2p system out of WLANs was proposed by Antoniadis et al.
(2003b) and (2003a). Their model is different to ours, because they assume that the prefer-
ence parameters of the participants are known to a global planner. They also discuss security
and architectural issues (which may be fundamental for the implementors). ~We focus on
a more demanding, incomplete information model, seeking incentive policies so that partic-
ipants gain by participating and by being truthful. We also discuss conditions under which

no actual money may be part of a peer’s contribution, but he may only contribute resources,



i.e., make contributions ‘in kind’. These issues can be crucial when implementing the system.

We must stress that the business aspect of ubiquitous wireless access is currently receiving
lots of attention from communication providers. WISP (Wireless ISP) associations, like Pass-
One, and large companies, such as Cometa Networks (with founders including AT&T, IBM
and Intel), are attempting to standardize technologies, protocols and behaviors among existing
WISPs in order to make WLAN roaming as seamless as possible. Cometa and other large
WISPs attempt to set up new WLAN APs in hot spots and create their own standards,
usually by investing a substantial amount of capital in the process. Due to its p2p character,
our approach is fundamentally different. The network does not belong to a small number of
telecom operators, but to the users themselves.

The paper is organized as follows. In Section 2 we formulate a WLAN peering model and
discuss issues of cost. Section 3 formulates the optimization problem. In Section 4 we derive

the limiting form amd solution for a large system. Section 5 reports some numerical results.

2 A WLAN peering model

Suppose that a number of WLANs are available in L locations. Each location is a large
geographical area like a neighbourhood or a part of a city centre. Potentially ny WLANSs are
available in location £. The owners of the WLANSs arrange to peer with one another, and thus
agent a;j, who is the owner of the jth WLAN in location 4, benefits when he roams in other
locations.

There are many possible models of benefit and cost. We focus on two. Our first model
supposes sparse coverage in all locations, i.e., ny is much smaller than is needed to cover all of
location £. Once a roaming peer is within coverage, he is accepted (perhaps with some fixed
probability < 1). So coverage is a public good. The quality of service in location £ is defined
as the probability @y that roaming peer obtains service in location £, and hence is equal to
the proportion of area £ that is covered. The important issue is to provide incentives for this
area to grow, while balancing the resulting costs, assuming that existing WLAN owners can,

at some cost, increase their area of coverage (by upgrading or increasing the number of base



stations).

Our second model supposes dense coverage, i.e, that locations have enough WLANs to
provide full coverage. However, each individual WLAN owner can restrict the number of
roaming customers who may simultaneously access the Internet through his infrastructure and
so consume some of his bandwidth. The quality of service QJy now models the geographically
averaged probability that a roaming peer is granted service in location £. Now incentives
must be given to peers to accept more simultaneous roaming customers, while balancing the
resulting opportunity cost of the bandwidth they consume.

We shall focus on the first model. Suppose that agent a;; receives total benefit

L
0i; Z uie(Qe) ,
=1

where the preference parameters {0;; }?;1 are independent, identically distributed realizations
of random variables with distribution function Fj. All the F; are known to all agents, but
0;; is known to agent a;; alone. We allow the possibility that agent a;; may or may not be
included in the set of agents who peer with one another, i.e., who share their WLANSs, and
we denote these possibilities by m;; = 1 and 7;; = 0 respectively.

The cost of ensuring quality Q; in location ¢ ¢;(Q;, > hj QpiThj), where ay; is the rate at
which a single (typical or average) agent from location h generates Internet access requests in
location i. It is natural to suppose that ¢;(-,-) is increasing in both arguments, since the cost
of providing quality level @Q; (by provisioning of bandwidth, availability, etc.) should increase
both in @); and in the total rate at which agents request Internet access in location . Showing

the functional dependency, the social welfare function is

L

ng L L
Z Z ;035 Z uie(Qe) — Z Ci (Qia > hm ahi"rhm) .
i=1 j=1 =1 i=1

The decision variables m;; and @Q; are to chosen as functions of 8, where this denotes a vector

of all the 6;;. Let us specialize here to ¢; = ¢;(Q;). We can be generalize this later. Thus the



expected social welfare is then

L n;
/@ S 7 (0)0; T uie(@e(0)) — c:(@4(8)) | dF(6), 1)
i=1 =1

where © is the domain of 8 and F(0) is its distribution function, i.e., F/(8) =[], ; Fi(6:)-

Let us make some remarks on the cost. In the traditional model of public good provi-
sioning, ¢;(+) is the cost to a central authority of providing the public good. In our model,
no central authority exists to provide and manage the WLAN access points. These belong
to the peers themselves. Each roaming peer who connects to the Internet through a WLAN
consumes some minimum bandwidth. Accepting a roaming customer means allocating an
‘WLAN channel’. Every channel that a peer makes available to roaming customers reduces
the bandwidth available for his own use. As this is costly, he will control the maximum
number of roaming customers to whom he offers connectivity at any point in time.

If a global planner is to ensure a quality of service @); then he must supply a total amount
of resource (available channels or area of coverage) by extracting it from the existing WLANs
in location 7. There are two cases to consider. In the first case, the planner acts as a middle
man who both pays peers to provide resources and also collect fees. Here, ¢;(-) is the cost
of the resources that must be purchased in location i. Agent a;; pays p;;(@), which is his
contribution towards the total cost of the services subcontracted by the planner. We require
>0 Pij(0) > 3, ci().

In the second case, monetary payments are not possible, but only payments in kind. This
means that the cost must be measured in the units of the resource that is to be provided. E.g.,
the cost is linear in the number of channels or percentage of area covered by WLAN services.
We must redefine our monetary unit to be a resource unit, and re-scale other functions
appropriately. Now ¢;(-) is the amount of resource required in location i and p;;(@) is the
amount of resource that agent a;; contributes. For example, we might take c;(Q;) = Q;- When
we maximize (1) with respect to the m;;(0) and (;(@), it must be subject to L constraints
> pij(0) > ci(),i=1,..., L.

We must take account of two further constraints. Agent a;; should expect to benefit by

participating (individual rationality). He should also have the incentive to report his true
6



value 6;; (incentive compatibility). Let f; denote the density of F;, and define

Fi(9)z'j) . @)

1—
gz’(eij) = 9ij - T
t\Yej

We assume g;(-) is nondecreasing. In Section 3 we consider the case in which monetary pay-
ments are possible and show that we can account for all the above constraints by maximizing

(1) subject to
L n;
/@Z [Z 7i3(0)9i(035) Yoy uie(Qe(8)) — c;(Qi(0)) | dF(8) > 0. (3)

Let P(n) denote the problem of maximizing (1) subject to (3).
In Section 4 we show that as n becomes large, with (n1,...,nz) = (np1,...,npr) for some

given pi,...,pr), the limiting form of P(n) is P(n), defined as: maximize

1
> | SEywalQo) [ mi610:ar0) - (@) @)
=1

with respect to Q1,...,Q and 7m1(-),...,7L(:), subject to the constraint

ihauw@f<)wwwwmmk. (5)

i=1

Suppose Q%,...,Q% and 7i(-),..., 7% (-) solve P(n). Then Q;(8) = Q* and 7i;(0) = 75 (0:5)

are feasible for P(n) and maximize (1) to within o(n) of its optimum value.

3 A problem of provisioning WLANSs

Internet access in location 4 is a public good, which is of potential benefit to all agents roaming
in location ¢. As we have said, there are two possibilities. Either there are monetary transfers,
so resources can be purchased from those agents based in location i, or there are no monetary

transfers, but agents in location ¢ provide resources in exchange for being allowed to roam in

If only payments in kind are possible, then we would need L constraints, equivalent to requiring that each
term in the sum on ¢ on the left hand side of (3) is individually nonnegative.



other regions. Throughout what follows we take the first of these viewpoints. Throughout
what follows we allow monetary transfers. We also suppose that there is a mechanism for
excluding agents from the peering set. Given probability with agent a;; is included. If
exclusion is not an option, then we simply make the restriction 7;;(#) = 1 for all 4,5 and 6.
We adapt as follows ideas of Hellwig (2003) and Norman (2004).

An allocation is said to be feasible if the sum of the payments made by agents in location

1 covers the cost of providing quality of service @); in that location, i.e.,

Z Z 7r1] pl] —¢i (Qi(0)) ] >0 (6)

=1 =

for all @ € ©. An allocation is weakly feasible if the expected sum of the payments covers

the expected cost, i.e.,

Z Zm )i (0) — i (Qi(8)) | | > 0. (1)

=1 =

Note that agents who are excluded do not pay.

Suppose agent a;; pays p;;(#). Let us define

Vij(0s5) =/ i (035, 0 i5) Do ui(Qe(0ij, 0 45)) dF (0 45) (8)

Pij(05) = / 7ij(0ij, 0—ij)pij (0ij, 0 —ij) AF (0-i5) - (9)

ij
Here @_;; denotes the vector of all preference parameters other than that of agent a;;. Its
distribution function is F'(6_;;) and its domain is ©_;.
Agent a;; must expect to have a positive net benefit and an incentive to report truthfully

his value of 0;;. These are the condition of individual rationality?:

0:Vij(0i5) — Pi;(0i5) > 0 (10)

2Since this is a function of an agent’s expected benefit, there can be times when he is be required to pay
more than he benefits, in which cases he might decide not to participate. Our model make most sense if users
make binding agreements to participate, or if there are repeated rounds, so a user who reneges on participating
in one round can be punished in subsequent rounds.



and incentive compatibility:
0:jVij(0i) — Pij(0i) > 053Vij(035) — Pyj(0y5),  for all ;5 € [0, 1]. (11)

We have the following.

Lemma 1 (a) It is necessary and sufficient for incentive compatibility that (i) V;;(0:5) is

nondecreasing in 0;;, and (i)
0,']‘
Py(03) = Pig0) + 0Vig0) — [ Vig(a)dn, (12)
0

(b) Given incentive compatibility, a necessary and sufficient condition for individual rational-

ity is P;(0) < 0.

Proof. Firstly, we must have
[0i;Vij Bi;) — Pij(0i)] + 035 Vij (0i5) — Py (0i)] > [0:5Vi(0i5) — Pij(0i)] + [045Vij (Bi) — Pij(6i5)]

If this were not true then it would be better to declare 9ij when 0;; = 9ij, and/or to declare
éij when 9,']' = é” The above gives (é” - ézg)[vvz](ém) - ‘/;](éz])] 2 0 and hence we find the
condition that (i) V;;(6;;) is nondecreasing in 6;;.

Secondly, since 6;; maximizes HijVij(éij) - Py (9”) with respect to 9ij, we must have, taking

derivatives with respect to 0;;,
0:;Vy;(6:5) — P;(0i5) = 0.

Integrating the above, we find (12). Thus (i) and (ii) are necessary for incentive compatibility.
It is easy to check that they are also sufficient.

Individual rationality is the condition that 6;;V;;(0;;) — P;;(0;;) > 0 for all 6;;. Considering
this as 6;; — 0, we see that individual rationality requires P;;(0) < 0. Conversely, P;;(0) < 0

and incentive compatibility, implies individual rationality via (8) and (12). [ |

Now consider the problem of maximizing expected social welfare, subject to the constraint



that our mechanism is weakly feasible?, individually rational and incentive compatible. This

means we are to maximize
Ly ng )05 SE s e @0(6) — s (Qu(0)) | dF(0). 13

Since the scheme is to be incentive compatible, we can deduce from (12) that the expected

sum of the payments in location ¢ is given by
n;
Z/ﬂ'ij(gijae—ij)pij(g) dF(9) (14)
j=1

= i:/Pij(@ij)dF(O)
Jj=1
ng n; eij
:;Pij(()) +g/ |:0ijVij(9ij) —/O Vij(n)dn] dF ()
=3P+ / 5(0)9(05) S e (Qu(6) AF(6). (19
j=1

Since the scheme is to be weakly feasible, we can use (15) to deduce that our problem is one

of maximizing (13) subject to
“ R0 < - 3 [ [m5(0)0(0,) Kl Qul0) - s Q0] 4P @),
ij

The maximization is with respect to a choice of the functions @;(#) and the constants P;;(0).
Restricting ourself to individually rational payments means we must take P;;(0) < 0 for all i.
These enter only through their sum, and we may take every P;;(0) = 0. This gives P;;(6;;) > 0

for all #;;, which is as we wish if the payments are to be made in kind. Hence the problem

3In practice, we would like to have the stronger condition of feasibility, so that the required resources to
be provided with probability 1. If we are allowed to charge excluded agents, then an argument of Cramton
et al. (1987) shows that a scheme which is weakly feasible, incentive compatible and individual rational can
always be turned into one that is feasible, incentive compatible and individual rational. See Lemma 5 in the
Appendix. However, this requires some monetary transfer payments between the agents, so we are no longer
in a market where the only currency is payment in kind. If excluded agents cannot be charged, then it is not
yet clear to us whether a similar result can be proved. Perhaps one can only hope for weak feasibility. But
the fact that we are providing the required resources on average may be enough. It is possible to modify the
optimal weakly feasible scheme so that as n — oo, with n; = np;, the probability the scheme is feasible tends
to 1 and the percentage reduction in expected social welfare tends to 0.

10



reduces to one of maximizing (13) subject to

L3 2 mi(0):(0) e Qu(0)) - c: (@) | dF(6) 2 0, (16)

The maximum is to be found by pointwise choice of 7;;(0) and Q;(@). Having found it, we can
calculate V;;(6;;), and then the P;;(6;;) from (12). Finally, we set p;;(0) = P;;(0i;)/ Eq_,; ij (03,0 —ij)
if 7;(@) > 0 and p;;(0) = 0 if m;;(@) = 0, so that agent a;; pays only if he is included and (9)
holds.

We can establish several more important lemmas. Lemma 4 guarantees one of the condi-
tions that we require for incentive compatibility, i.e., (i) on page 9. Lemma 3 is used to prove

Theorem 1 and establish the limiting problem P(n).

Lemma 2 If for two agents in location ¢ we have 0;; > 0;, an optimal solution must have

735 (0) > min(0).

Proof. If this were not so, consider a new solution, the same as the old, except with the
values of 7;;(0) and ;;,(0) interchanged. This would increase the value of (13) (as 6;; > 0;5)

and not decrease the left hand side of (16) (as g;(6i;) > gi(0in))- |

Lemma 3 There exists a Lagrange multiplier \ such that an optimal solution to P(n) can

be found by mazimizing The Lagrangian

L3

=1

{Z 75 (0) (65 + Agi(0i7)) Y1 wie(Qe(8)) — (1+ Nei(Qi(0)) | dF(6) . (17)

=1
The proof is in the Appendix.
Lemma 4 V;;(0;;) is nondecreasing in 0;;.

Proof. It is sufficient to show that 7;;(0;5,0—_i;) >, uie(Qe(0i5, 0—i;)) is nondecreasing in 6;;.
For then integrating with respect to 6_;; would complete the proof.

So suppose this were not true and that for a fixed 6_;;, and ng > 0;; we have

Tij (0ig: 0—ij) Do wie(Qe(0i5, 0—i5)) > mij (0, 0—i5) D-p uie(Qe (05, 0—i5))

11



Denote the integrand in (17) by s(@) and consider s(0;;,0_;;) and s(0;;,0_;;). Suppose
we make a change in which the values of Qy(60;5,0—_i;), Tke(6ij,0—i;) are interchanged with
Qe(8%;,0-i5), Tre(0;;,0-i5) for all k,£. With these changes, denote the integrand by 5().

Then as 0;; + Xigi(0;) < 9” + )\Zgi(ﬁz’-j) we find

5(0ij,0—ij) + 5(0i5,0—i) < 5(0ij,0—ij) + 5(6;5,0—ij)

This contradicts the fact that the original choices of the Q¢(@), m;;(0) were optimal, since

that would require would require s(6;;,0-i;) > 5(645,60-i;) and s(0;;,0_i;) > 5(6;;,0_;;). A

4 The provisioning problem for a large system

It is difficult to compute and communicate the 7;;(0), Q;(0) (which maximize (17)) and the
payments that the participants are to make. A central authority would have to learn the
preference parameters of all the agents and then communicate the required payments to the
agents. Fortunately, when n is large the problem becomes easier. Recall that our problem
P(n) is to maximize (1) subject to (3). Let us take n; = np;. We have defined problem P(n)

as one of maximizing (4) subject to (5). This becomes the problem of maximizing

. 1
Z; [nz >t Uie(Qz)/O 7;(0;)0; dF;(0;) — c; (Qi)] (18)
with respect to Q1,...,Qr and m1(+),...,7L(-), subject to the constraint
L 1
Z {nz Ze 1 Uie Qe)/ (0:)gi(6;) dF;(0;) — (QZ)] >0, (19)
=1

Theorem 1 Let ®, and & denote the optimal values of P(n) and P(n) respectively. Then

12



Moreover, if the decision variables Q7,...,Q7 and ©i(-),...,7L(-) solve P(n), then by taking
7i;(0) = 7} (i) and Q;(0) = QF, for all @ and i,j, we have a feasible solution for P(n) for

which the value of the expected social welfare is @n, i.e., suboptimal by only o(n).

Form of the limiting solution

Note that the optimal solution to P(n) can be computed off-line. In particular, 7} (6;) is 1 or

0 as 6; does or does not exceed a threshold, say 6. We find that (8) becomes

Vi(0i5) = mi(0i5) D p ui(Qe) (20)

and from (12) we have

P;(0:5) = 0;Vi(0;;) - (21)

Thus every WLAN in location ¢ that is included for roaming is required to pay the same
fixed fee ), 07u;(Q,). This fee can be calculated (from the n;, u; and F;) and communicated

before hearing the values of the preference parameters. Is(n) is now just

L
maximize > [ni(1 — Fi(607)) Lo (Qe) — (@] (22)
Q1 QL0 0y
subject to
L
> [ra = Fi(09)) 0 S0 ui(Q0) - (@i)] 2 0. (23)
i=1

The proofis in the Appendix and is given for the more general case in which only payments

in kind are possible. Now we require L constraints

/[Zﬂ'zy gz i Ze 1“1@(@@( ))_CZ(QZ(O)) dF(a) >0. (24)

1 =1,..., L. However, it now becomes harder to prove the equivalent of Lemma 3. Instead,

we make an equivalent assumption.

13



Assumption 1 There exist A1,...,A > 0 such that P(n) can be solved by mazimizing the

Lagrangian

[x

=1

lz mi(8) (055 + Xigi(0:5)) Lpey wie(Qe(0)) — (14 Ni)ci (Qi(0)) | F(6) . (25)

j=1

The mazimization is carried out pointwise. That is, for each 0, the values of m;;(6) and Q;(0)

are chosen to mazimize the integrand in (25).

5 Numerical Results

In this section we will include variations on our model, different costs, the proofs, numerical
results for applications to simple problems and further discussion. We are grateful to Panos

Antoniadis, Robin Mason, George Polyzos and Ben Strulo for helpful suggestions.
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A Proofs

A.1 Proof of Lemma 3

We will add this proof later. Essentially, it is an application of the intermediate value theorem.

A.2 Proof of Theorem 1

Note that solving P(n) is equivalent to solving P(n) under the additional constraints that
7;;(@) depends on only ¢;; and Q;(-) depends only on i. This fact immediately gives d, < ®,.
Moreover, if we take as a solution to P(n), m;;(0) = 7} (0;;) and Q;(0) = QF for all 8 and 1, j,
then these define a weakly feasible, incentive compatible and individually rational scheme
that has expected social welfare equal to ®,. We can set pi;(0i5) equal to P;;(6;5), where
P;;(0;4) is calculated via (8) and (12).

It remains to show that ®, < &, + o(n). By Assumption 1, the problem can be solved
by maximizing a Lagrangian with Lagrange multipliers A = (A1,...,Ar). Then for X and all

other A we have

. lew (005 + Aege(007)) YoE— uen (@4(0)) — (1 + A)ea(@u0)) | dF ()
e ( ¢=1 Lj=1
e[ Z[Zw )0+ Mear(0)) Ly un(@(0)) — (1 + M)en(Qe(0)) | dF(6)
e()mes (- (=1 Lj=1

(26)

We will show that the integral in (26) is bounded above by &, + o(n), where

N 1
®, = mem?’(( Zne [Zh ! ueh(Qh)/ 0(6) (Oc + ge(6e)) dFy(6e) — n_e(l + Ae)ee(Qe)
2¥
(27)
Let us now suppose that each Fj is the uniform distribution. It is notationally more

elaborate, but routine, to prove the theorem for general Fj.
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Imagine dividing the interval [0, 1] into k equal parts, defining

L
I = [’T@ i=1,... k.

Let the random variable X,; be the number of the 0y, ..., 8, that are in I;, Note that Xy,
has a binomial distribution with mean ny/k, and that by Chebyshev’s inequality we have

(1l —1/k)(1/k)

P(|X¢ —ng/k| > €) < 2

<n
_62'

We shall use this with e = n?/3. Let us define the set S = {0 : | Xy —ng/k| < n?/3, for all £,4}.

Then

P(5) = P(LLJ LkJ {IX& —ne/k| > n2/3}) < EL:ZIC:P({P% —ne/k| > n2/3}) < #
—1i=1 =

14=1

Let s(@) denote the integrand in (26). Then we have for (26)

max s(0)dF(0) < max /SGdFG—I— max /sBdFO 28
Qz(')amj(')/e (6) dF(6) Qe(), () Js (6) dF(6) Qe(), 7 () J ge (6)dF(8) (28)

Since P(S¢) < 1/n'/3 we can bound the final term in (28) by (1/n'/3)(nB), where B is a

bound such that for all 4, 7, 6.

i5(0) (035 + Nigi(0i5)) Sopy uie(Qe(8)) — (1 + X)ei(Qi(9)) < B.
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We bound the first term in on the right hand side of (28) by

0)dF (0 29
szgii(-)/gs() ©) (29
L
< g mex, > ZXeﬂre )(6: + Aege(6:)) k=1 uen(Qn) — (1 +/\e)0z(Qz)] (30)
Brelrdrely =

w1(+) 5L ()

Ql; aQLaeES )
91€l1,. €Ty, =1 Li=1

ﬂ—l( )z =7TL()

L [ k
< max Z Z(ng/k)m( ) (0; + Aege(0 ))Zh 1uen(Qn) — (1 +)\€)C£(Q€)] (31)

L k
+BY > |Xei — ne/k| (32)

(=1 i=1

The second term in (32) is bounded by n?3LkB.
Given any € > 0 we can choose k sufficiently large so that the intervals I; have very small
widths, of 1/k, and so we can have (using continuity and approximation of an integral by a

Riemann sum)

L k
max Z[Z(ne/k)ﬂe(mw + Aege(0:) Sy uen(@n) — (1+)\e)Ce(Qe)]

771( )’ a7TL( )

< gmax anlzh 1ueh(Qh)/ 7(63) (Oc + Aege(0r)) dFp(0:) — (1 + Ae)ce(Qe) | + ne/2
m{ s () =1

Note that this requires that the term in square brackets be Riemann integrable. I imagine
we will want @) restricted to an interval.

Given this k we can then choose n sufficiently large that n?/3LkB is less than ne/2. It
follows, that given any € > 0 it is possible to choose k sufficiently large and then n sufficiently

large to deduce that for n sufficiently large (but depending on A),

P, < Q1 ax, ZW [Zh 1 Wh(Qh)/ 0(60:) (0 4 Nege(0e)) dFp(6;) — (1 4+ Ae)ce(Qe) | + me

") ’WL( )

By taking an infimum over A on the right hand side, assuming the infimum is achieved for

some A = (\j,...,Ar) that remain bounded as n — oo, we deduce ®, < &, + o(n). Note
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that, since we require a bound B that holds for all relevant A, we want to take this infimum
over a bounded set of A\. If the infimum were achieved only as A — oo then we could not

make this conclusion. [ ]

Lemma 5 Let us suppose there is just one location, with ny = n agents, none of whom is to be
excluded. We take, for notational convenience ¢1(Q) = ¢(Q). If Q(-), p1(-),--.,pn(0) defines
an incentive compatible, individually rational and weakly feasible scheme, then there is a new
payment function p;(-) such that Q(-), p1(-),...,Pn(0) is incentive compatible, individually

rational and feasible.

Proof. This is by an argument of Cramton et al. (1987), as follows. Let E[ - | 6;] denote

expection over 8_; given ;. Recall that P;(0;) = E [p;(0) | 6;]. Now define

71(0) = P.(6) + ~c(Q(0)) ~ ~E[c(Q(8)) | 6]
- LS [P - BP0
J#i
+ 5 Lni0) 6] - E(@)) (33)

Note that with this definition,

i

> 5il6:) = c(Q(0)) + ) EP;(6;) — Ec(Q(8)) > c(Q(6))
J

so the new payment function is feasible. Also, P;(8;) = E [p;(0) | 6;] = Pi(6;), so the new pay-
ments continue to satisfy the conditions of Lemma 1 and so the scheme is incentive compatible
and individually rational. |

In fact there is an easier proof, with formula more obvious than (33). We will add later

this later.
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