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Abstract

We consider problems of provisioning a good to a number of participants who are able
to communicate information about their private preferences for the good. The good may
or may not be a public good. This provisioning is to be done in a manner that is incentive
compatible, rational and feasible (in senses to be described). We show that as the number
of participants becomes large there is a limiting problem, whose solution takes a simple
form. For instance, it is near optimal to set a fixed fee and allow a participant to access
the good if he is willing to pay this fee. The advantage of this is that the provisioning
policy and fee structure can be easily communicated to the participants.

1 A problem of providing a public good

This paper is about problems of provisioning a good amongst a number of participants who
are able to communicate information about their private preferences for the good. The good
may or may not be a public good. This provisioning is to be done in a manner that is
incentive compatible, rational and feasible (in senses that are described below). In Section 2
we show that as the number of participants becomes large there is a limiting problem, whose
solution takes a simple form. For instance, it is near optimal to set a fixed fee and allow a
participant to access the good only if he is willing to pay this fee. The advantage of this is
that the provisioning policy and fee structure can be easily communicated to the participants.
In Section 3 we describe some models to which our result can be applied. We prove the main
theorem in Section 4 and discuss further directions in Section 5. Appendices A and B contain
proofs for specialized and generalized versions of our main theorem.

We begin by summarising a model of Hellwig (2003). Consider n agents that bargain
about the provision of a public good. A public good, once provided, can be enjoyed by all the
agents at once. To provide the good in quantity (or, in some applications, quality) Q costs
c(n, Q). Once the good is provided, the net benefit to agent i is

θiu(Q) − pi

where pi is the payment that the agent makes towards the cost of the good. The preference
parameter θi is the realization of a random variable with prior distribution function F on

∗Department of Computer Science Athens University of Economics and Business, Evelpidon Str., Athens
11362, GR

†Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK

1



[0, 1]. While F is known to all agents, the value of θi is known to agent i alone, We suppose
that θ1, . . . , θn are independent and identically distributed. Given θ = (θ1, . . . , θn), we ask
what Q(θ) should be, and what payments, p1(θ), . . . , pn(θ), the agents should be required to
make.

An allocation is said to be feasible if the sum of the payments always covers the cost, i.e.,

c(n, Q(θ)) ≤
n∑

i=1

pi(θ) (1)

for all θ ∈ [0, 1]n.
We say an allocation is weakly feasible if the expected sum of the payments covers the

expected cost, i.e., ∫
c(n, Q(θ))dFn(θ) ≤

n∑

i=1

∫
pi(θ)dFn(θ) . (2)

We suppose that the social planner may, if he wishes, exclude some agents from partici-
pating. Let πi(θ) be the probability with which he chooses to include agent i given announced
preferences θ. If exclusion is not an option for the planner, then we simply make the restriction
πi(θ) = 1 for all θ, i.

We also consider the fact that there must be an incentive for each agent to participate.
Agent i must expect to have a positive net benefit. This is the condition of individual ratio-
nality

θi

∫
πi(θi, θ−i)u(Q(θi, θ−i))dFn−1(θ−i) −

∫
πi(θi, θ−i)pi(θi, θ−i)dFn−1(θ−i) ≥ 0 . (3)

Here θ−i is the vector of the preference parameters of the n − 1 agents other than agent i.
Finally, we have an incentive compatibility condition, that agent i maximizes his expected

net benefit by a truthful declaration of θi, i.e.,

θi

∫
πi(θi, θ−i)u(Q(θi, θ−i))dFn−1(θ−i) −

∫
πi(θi, θ−i)pi(θi, θ−i)dFn−1(θ−i)

≥ θi

∫
πi(θi, θ−i)u(Q(θ̂i, θ−i)dFn−1(θ−i) −

∫
πi(θi, θ−i)pi(θ̂i, θ−i)dFn−1(θ−i) ≥ 0

for all θ̂ ∈ [0, 1].
We can now define

Vi(θi) =
∫

πi(θi, θ−i)u(Q(θi, θ−i))dFn−1(θ−i) (4)

and

Pi(θi) =
∫

πi(θi, θ−i)pi(θi, θ−i)dFn−1(θ−i) . (5)

The incentive compatibility condition implies two things. Firstly, we must have

[θ̂iVi(θ̂i) − Pi(θ̂i)] + [θ̄iVi(θ̄i) − Pi(θ̄i)] ≥ [θ̂iVi(θ̄i) − Pi(θ̄i)] + [θ̄iVi(θ̂i) − Pi(θ̂i)]
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If this were not true then it would be better to declare θ̂i when θi = θ̄i, and/or to declare θ̄i

when θi = θ̂i. The above gives (θ̂i − θ̄i)[Vi(θ̂i) − Vi(θ̄i)] ≥ 0 and hence we find the condition
that (i) Vi(θi) is nondecreasing in θi.

Secondly, since θi maximizes θiVi(θ̂i) − Pi(θ̂i) with respect to θ̂i, we must have

θiV
′
i (θi) − P ′

i (θi) = 0 .

Integrating the above, we find a second condition, (ii):

Pi(θi) = Pi(0) + θiVi(θi) −
∫ θi

0
Vi(η) dη . (6)

Thus (i) and (ii) are necessary for incentive compatibility. It is easy to check that they are
also sufficient.

Individual rationality is that θiVi(θi) − Pi(θi) ≥ 0 for all θi. Considering this as θi → 0,
we see that individual rationality requires Pi(0) ≤ 0. Conversely, Pi(0) ≤ 0 implies individual
rationality via (6).

Now consider the problem of maximizing social welfare subject to the constraint that
we use an allocation scheme which is weakly feasible1, individually rational and incentive
compatible. This means we are to maximize

∫ [
n∑

i=1

πi(θ)θiu(Q(θ)) − c(n, Q(θ))

]
dFn(θ) . (8)

Since the scheme is to be incentive compatible, we can deduce from (6) that the expected
sum of the payments is given by

n∑

i=1

∫
πi(θi, θ−i)pi(θ) dFn(θ) =

n∑

i=1

∫
Pi(θi) dF (θi)

=
n∑

i=1

Pi(0) +
n∑

i=1

∫ [
θiVi(θi) −

∫ θi

0
Vi(η)dη

]
dF (θi)

=
n∑

i=1

Pi(0) +
n∑

i=1

∫
πi(θi, θ−i)g(θi)u(Q(θ)) dFn(θ) (9)

1In fact, without actually making the problem any more difficult, we can strengthen the constraint of weak
feasibility to feasibility, since if {Q(·), p1(·), . . . , pn(θ)} is incentive compatible, weakly feasible and individually
rational then there is a new payment function p̂i(·) such that {Q(·), p̂1(·), . . . , p̂n(θ)} is incentive compatible,
feasible and individually rational. This is by an argument of Cramton et al. (1987), as follows. Explicitly, let

p̂i(θ) = Pi(θi) +
1

n
c(Q(θ)) − 1

n

∫
c(Q(θi, θ−i)) dF n−1(θ̂−i)

− 1

n − 1

∑

j �=i

[
Pj(θj) −

∫
Pj(θ̂j) dF (θ̂j)

]

+
1

n − 1

∑

j �=i

1

n

[∫
c(Q(θj , θ̂−j)) dF n−1(θ̂−j) −

∫
c(Q(θ̂)) dF n(θ̂)

]
. (7)

Note that with this definition,
∑

i p̂i(θi) = c(Q(θ)) +
∑

i

∫
Pi(θ̂j) dF (θ̂i) −

∫
c(Q(θ̂)) dF n(θ̂) ≥ c(Q(θ)) so the

new payment function is feasible. Also, P̂i(θi) = Pi(θi), so the new payments are incentive compatible and
individually rational.
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where we define
g(θi) = θi − 1 − Fi(θi)

f(θi)
. (10)

Since the scheme is to be weakly feasible, we can use (9) to deduce that our problem is one
of maximizing (8) subject to

−
n∑

i=1

Pi(0) ≤
n∑

i=1

∫
πi(θ)g(θi)u(Q(θ)) dFn(θ) −

∫
c(n, Q(θ) dFn(θ) (11)

The maximization is with respect to a choice of the function Q(θ) and the constants P1(0),
. . . , Pn(0). Restricting ourself to individually rational payments means we must take Pi(0) ≤ 0
for all i. These enter only through their sum, which we may therefore take to be zero. Hence
the problem reduces to one of maximizing (8) subject to the constraint

∫ [
n∑

i=1

πi(θ)g(θi)u(Q(θ)) − c(n, Q(θ))

]
dFn(θ) ≥ 0 . (12)

We are to maximize (8) subject to (12) by pointwise choice of Q(·). From this we can calculate
Vi(θi) and then the payments from (6) and (7). Provided Vi(θi) turns out to be nondecreasing
we have then solved the problem of maximizing social welfare subject to use of a feasible,
individually rational and incentive compatible scheme.

To solve the problem using Lagrangian methods, we must maximize the Lagrangian

∫ [
n∑

i=1

πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n, Q(θ))

]
dFn(θ) (13)

for some λ > 0. The maximization is carried out pointwise. That is, for each given θ, the
values of π1(θ), . . . , pn(θ) and Q(θ) are chosen to maximize

A(θ, λ)u(Q(θ)) − c(n, Q(θ)) (14)

where

A(θ, λ) =
∑n

i=1 πi(θ)(θi + λg(θi))
1 + λ

. (15)

The fact that the coefficient A(θ, λ) should be maximized means that we should take πi(θ) = 1
if and only if (θi + λg(θi)) > 0. Since g(θi) is nondecreasing, this means that agent i should
be included if and only if θi exceeds some θ̄(λ), where θ̄(λ) + λg(θ̄(λ)) = 0. Note that θ̄(λ) is
increasing in λ, A(θ̄(λ), λ) is decreasing in λ, and the Q(θ) which maximizes (14) is decreasing
in λ.

2 An analysis for large n

The solution we have obtained is relatively simple, since we just admit participants whose
preference parameters exceed some θ̄(lambda). However, there is still the difficult matter of
computing and communicating Q(θ) and the payments that the participants are to make.
Fortunately, when n is large the problem becomes easier, because the payment is equal to a
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fixed fee, and this can be calculated and communicated before hearing the values θ1, . . . , θn.
We now show why this is so. Recall that our problem is

maximize
∫ [

n∑

i=1

πi(θ)θiu(Q(θ)) − c(n, Q(θ))

]
dFn(θ) (16)

subject to ∫ [
n∑

i=1

πi(θ)g(θi)u(Q(θ)) − c(n, Q(θ))

]
dFn(θ) ≥ 0 . (17)

To describe what happens when n is large we will apply the following theorem, taking φ
and ψ such that when they are summed over i they produce the integrands of (16) and (17)
respectively. That is, let

φ(n, θi, πi(θ), Q(θ)) = πi(θ)θiu(Q(θ)) − c(n, Q(θ))/n

ψ(n, θi, πi(θ), Q(θ)) = πi(θ)g(θi)u(Q(θ)) − c(n, Q(θ))/n

Theorem 1 Suppose θ1, . . . , θn are independent and identically distributed random variables
over [0, 1] with continuous distribution function F . Let θ = (θ1, . . . , θn). Let φ and ψ be any
functions, φ, ψ : [0, 1] × R

+ × R
+ → R. Assume that |c(Q)|, |φ(θi, Qi, Q)| and |ψ(θi, Qi, Q)|

are bounded, say by B, for all (θi, Qi, Q). Let us define

Φn = max
Q1(·),...,Qn(·),Q(·)

∫ [
n∑

i=1

φ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) (18)

subject to ∫ [
n∑

i=1

ψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) ≥ 0 , (19)

where the maximization is over the choice of Q1(θ), . . . , Qn(θ) and Q(θ) for each θ ∈ [0, 1]n.
Define

Φ̂ = max
Q,Q1(·)

∫ 1

0
φ(n, θ1, Q1(θ1), Q) dF (θ1) (20)

subject to ∫ 1

0
ψ(n, θ1, Q1(θ1), Q) dF (θ1) ≥ 0 . (21)

Then

nΦ̂ ≤ Φn ≤ nΦ̂ + o(n) .

Moreover, note that If Q∗, Q∗
1(·) solves (20)–(21), then taking Q(θ) = Q∗ for all θ and Qi(·) =

Q1(·) for all i solves (18)–(19) to within o(n).

The proof of Theorem 1 is given in Section 5. For a proof of the theorem that is specialized
to the model of Section 1, see Appendix A. We can find an approximate solution to the
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problem of Section 1 when n is large by solving a simple problem. We must choose θ̄ and Q
to maximize

u(Q)
∫ 1

θ̄
θ1dF (θ1) − c(n, Q)/n

subject to
u(Q)θ̄(1 − F (θ̄)) − c(n, Q)/n ≥ 0

3 Other problems

We now describe some other problems to which we can either apply Theorem 1 or generalize
it to handle.

3.1 An extension

Suppose that the cost of providing the good depends not on n, but rather on the number of
people included. Now the objective is

∫ [
n∑

i=1

πi(θ)θiu(Q(θ)) − c
(∑

j πj(θ), Q(θ)
)]

dFn(θ) (22)

The analysis of this problem is very similar to that of the network model analyzed in Sec-
tion 3.4. We must let Q be a vector, and permit contraints between Q and the Qi. For
example, in (22) we would take Qi(θ) = πi(θ) and let Q be a vector of two components, one
of which is the total quantity of the good provided (namely, Q(θ) in (22)) and the other is∑

j πj(θ).

3.2 File sharing

We consider a model in which agents have private preference parameters θ1, . . . , θn and the
cost of operating a system in which Q files are shared is c(Q). It is desired to maximize the
social welfare function

∑
i θiu(Q) − c(Q).

As we have seen above, a near optimal policy when n is large is to admit only those agents
whose preference parameter exceeds some θ̄. The problem is then

maximize
Q, θ̄

{
u(Q)

∫ 1

θ̄
(1 − F (θ))dθ

}

subject to
n[1 − F (θ̄)]θ̄u(Q) − c(Q) ≥ 0 (23)

So that Lagrangian methods can be applied to this problem, we rewrite the problem as

maximize
Q,θ̄

{
log u(Q) + log

∫ 1

θ̄
(1 − F (θ))dθ

}
(24)

subject to
c(Q)
u(Q)

− n[1 − F (θ̄)]θ̄ ≤ 0 (25)
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If each summand in (24) is concave and both c(Q)/u(Q) and −[1 − F (θ̄)]θ̄ in (25) are
convex then the problem can be solved by Lagrangian methods. These facts are so for the
particular case of Q(c) = cQ2, u(Q) = Q1/2 and F (x) = x and we easily find that the optimum
occurs where θ̄ = 1/8 and Q = (7n/64c)2/3.

3.3 WLAN peering model

Suppose that wireless LANs are built in k locations, and that there are potentially ni LANS
to be built in location i. The jth LAN in location i has a preference parameter θij and the
social welfare function is

∑

i,j

πijθij

k∑

�=1

u�(Q�)

where Q� is the quality of service provided in location �. The idea is that the owner of a LAN
in location i receives benefit when he roams in location j. The numbers {θij}ni

j=1 are taken to
be iid samples from a distribution with distribution function Fi. The cost of providing quality
Qi in location i is c(Qi, αi

∑
i,j πij), where the second argument expresses a dependence on

the demand generated by customers roaming in location i. This cost must be covered by the
payments made by LANS based in location i. Thus we have the problem of maximizing

∫

Θ

k∑

i=1




ni∑

j=1

πi,j(θ)θi,j
∑k

�=1 u�(Q�(θ)) − c
(
Qi(θ), αi

∑
i,j πi,j(θ)

)



∏

i

dFni
i (θi·)

subject to k constraints of the form

∫

Θ




ni∑

j=1

πi,j(θ)g(θi,j)
∑k

�=1 u�(Q�(θ)) − c
(
Qi(θ), αi

∑
i,j πi,j(θ)

)


 dFni
i (θi·) ≥ 0

The maximization is to be with respect to the functions {Qi(θ), i = 1, . . . , k} and {πi,j(θ), i =
1, . . . , k, j = 1, . . . , k}.

The limiting problem (as n becomes large, with (n1, . . . , nk) = (nρ1, . . . , nρk) for some
given ρ1, . . . , ρk) is

k∑

i=1

ni

[∑k
�=1 u�(Q�)

∫ 1

0
πi(θi)θidFi(θi) − 1

ni
c
(
Qi, αi

∑
j nj

∫ 1
0 πj(θ′j)dFj(θ′j)

)]

This is to be maximized subject to k constraints of the form

∑k
�=1 u�(Q�)

∫ 1

0
πi(θi)g(θi)dFi(θi) − 1

ni
c
(
Qi, αi

∑
j nj

∫ 1
0 πj(θ′j)dFj(θ′j)

)
≥ 0

with respect to Q1, . . . , Qk and π1(·), . . . , πk(·).

3.4 A network model

We might also formulate models in which the good cannot be shared. We continue to assume
that the agents have preference parameters θ1, . . . , θn. As a function of the declared values of
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these parameters, agents 1, . . . , n are to be admitted or not and allocated exclusive quantities
of the good, Q1(θ), . . . , Qn(θ), respectively, and the cost is a function of

∑
j πj(θ)Qj(θ). The

problem is now to

maximize
∫ [

n∑

i=1

πi(θ)θiu(Qi(θ)) − c(n,
∑

j πj(θ)Qj(θ))

]
dFn(θ) (26)

(27)

subject to

∫ [
n∑

i=1

πi(θ)g(θi)u(Qi(θ)) − c(n,
∑

j πj(θ)Qj(θ))

]
dFn(θ) ≥ 0 (28)

(29)

Further anaylsis of this model is continued in Appendix B.

4 Proof of Theorem 1

We now give the proof of the main result of this paper.
Proof. Suppose that the problem can be solved by maximizing a Lagrangian with Lagrange
multiplier λ̄. Then for λ̄ and all other λ we have

Φn = max
Q1(·),...,Qn(·),Q(·)

∫ [
n∑

i=1

φ(n, θi, Qi(θ), Q(θ)) + λ̄ψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) (30)

≤ max
Q1(·),...,Qn(·)Q(·)

∫ [
n∑

i=1

φ(n, θi, Qi(θ), Q(θ)) + λψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) (31)

We will show that the integral in (31) is bounded above by nΦ̂n + o(n), where

Φ̂n = inf
λ

max
Q1(·),Q

∫
[φ(n, θ1, Q1(θ1), Q) + λψ(n, θ1, Q1(θ1), Q)] dF (θ1) (32)

We will need that |φ(n, θ1, Q1, Q) + λψ(n, θ1, Q1, Q)| to be bounded for all θ1, Q1 and Q.
By making the restriction that Q1 = · · · = Qn, it is easy to see that Φn ≥ nΦ̂n. Let

us look at the proof of the bound Φn ≤ nΦ̂n + o(n). We prove the theorem when F is the
uniform distribution. It is notationally more elaborate, but routine, to prove the theorem for
general F .

Imagine dividing the interval [0, 1] into k equal parts, defining

Ii =
[
i − 1

k
,
i

k

)
, i = 1, . . . , k.

Let the random variable Xi be the number of the θ1, . . . , θn that are in Ii, Note that Xi has
a binomial distribution with mean n/k, and that by Chebyshev’s inequality we have

P (|Xi − n/k| > ε) ≤ n(1 − 1/k)(1/k)
ε2
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We shall use this with ε = n2/3. Let us define the set S = {θ : |Xi − n/k| ≤ n2/3, for all i}.
Then

P (Sc) = P

(
k⋃

i=1

{
|Xi − n/k| > n2/3

})
≤

k∑

i=1

P
({

|Xi − n/k| > n2/3
})

≤ 1
n1/3

Then we have for (42)

max
Q1(·),...,Qn(·),Q(·)

∫ [
n∑

i=1

φ(n, θi, Qi(θ), Q(θ)) + λψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) (33)

≤ max
Q1(·),...,Qn(·),Q(·)

∫

θ∈S

[
n∑

i=1

φ(n, θi, Qi(θ), Q(θ)) + λψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) (34)

+ max
Q1(·),...,Qn(·),Q(·)

∫

θ �∈S

[
n∑

i=1

φ(n, θi, Qi(θ), Q(θ)) + λψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) (35)

Since P (Sc) ≤ 1/n2/3 we can bound (35) by (1/n1/3)(nB), where B is bound on |φ(n, θi, Qi, Q)+
λψ(n, θi, Qi, Q)|. We bound (34) by

max
Q1(·),...,Qn(·),Q(·)

∫

θ∈S

[
n∑

i=1

φ(n, θi, Qi(θ), Q(θ)) + λψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ) (36)

≤ max
Q1,...,Qn,Q,θ∈S

[
n∑

i=1

φ(n, θi, Qi, Q) + λψ(n, θi, Qi, Q)

]
(37)

= max
Q1,...,Qn,Q,θ∈S,

θ1∈I1,...,θk∈Ik

k∑

i=1

Xi[φ(n, θi, Qi, Q) + λψ(n, θi, Qi, Q)] (38)

≤ max
Q1,...,Qn,Q,θ∈S,

θ1∈I1,...,θk∈Ik

(n/k)
k∑

i=1

[φ(n, θi, Qi, Q) + λψ(n, θi, Qi, Q)] +
k∑

i=1

|Xi − (n/k)|B (39)

≤ max
Q1,...,Qn,Q,θ∈S

θ1∈I1,...,θk∈Ik

(n/k)
k∑

i=1

[φ(n, θi, Qi, Q) + λψ(n, θi, Qi, Q)] + n2/3kB . (40)

Given any ε > 0 we can choose k sufficiently large so that the intervals Ii have very small
widths, of 1/k, and so we can have (using continuity of f and approximation of an integral
by a Reimamm sum)

max
Q1,...,Qn,Q,

θ1∈I1,...,θk∈Ik

(1/k)
k∑

i=1

[φ(n, θi, Qi, Q) + λψ(n, θi, Qi, Q)]

≤ max
Q1(·),Q

∫ 1

0
[φ(n, θ1, Q1(·), Q) + λψ(n, θ1, Q1(·), Q)] dF (θ1) + ε/2
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Note that this requires that the term in square brackets be Riemann integrable. I imagine
we will want Q restricted to an interval.

Given this k we can then choose n sufficiently large that n2/3B + n2/3kB is less than
nε/2. It follows, that given any ε > 0 it is possible to choose k sufficiently large and then n
sufficiently large to deduce that for n sufficiently large (but depending on λ),

max
Q1(·),...,Qn(·),Q(·)

∫ [
n∑

i=1

φ(n, θi, Qi(θ), Q(θ)) + λψ(n, θi, Qi(θ), Q(θ))

]
dFn(θ)

≤ n max
Q1(·),Q

∫ 1

0
[φ(n, θ1, Q1(·), Q) + λψ(n, θ1, Q1(·), Q)] dF (θ1) + nε

By taking an infimum over λ on the right hand side, assuming the infimum is achieved for
some finite λ, we deduce Φn ≤ nΦ̂n + o(n). Note that if the infimum were achieved only as
λ → ∞ then we could not make this conclusion.

Remark. If we have the additional condition that φ(n, θi, Qi, Q)) = φ∗(θi, Qi, Q)) and
ψ(n, θi, Qi, Q)) = ψ∗(θi, Qi, Q)) then we can replace φ(n, θi, Qi, Q)) and φ(n, θi, Qi, Q)) with
φ∗(θi, Qi, Q)) and φ(θi, Qi, Q)) respectively in (20) and (21).

5 On-going research

This is a working paper. There are further things upon which we intend to comment in the
final version of this paper.

1. The asymptotic problem provides information about the best that can be obtained
by schemes operating under the constraints of optimal incentive compatibility, waek
feasibility and individually rationality. It allows us to see what is the benefit loss that
occurs because of these constraints. The asymtotics tell us that the payments under an
optimal scheme are tend to the value of an optimal fixed entrance fee. Compared to a
fixed entrance fee scheme, an optimal scheme realizes very little extra benefit (typically
only O(

√
n), or O(1/

√
n) per capita).

2. The constraints of weak feasibility and individual rationality are ones that must be met
only on average. Might there be some nice formulation of our problem in which we have
a repeated game and these constraints therefore seem more natural?

3. We have seen that argument of Cramton et al. (1987) demonstrates that weak feasibility
implies feasibility. This does not appear to be provable when we take a model that
allows exclusions. However, it is nearly optimal to runa fixed entrance fee scheme. By
increasing the fee a bit we should be able to obtain O(n) more revenue, which will cover
any O(

√
n) uncovered cost and thereby ensure that we have feasibility with a very high

probability.

4. There
√

n results come from Hellwig’s paper. Can we reproduce them more directly,
along the lines of this paper? This would mean making more careful estimates and
improving our essentially law of large numbers results to some sort of central limit
theorem results.
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5. There is an implicit assumption that the utility functions of the users is quasilinear in
the payment. If the payment is euros, everything is euros. But what if we would like
to make the payment in kind, say in channels or files? The same should hold, i.e., the
utility should be quasilinear in files or channels. This rules out the case where the cost
of individual users to provide fi files is f2

i for instance. It works only if it is linear
in fi. Same for the WLANs. So we may not be in general able to balance cost with
contributions in kind unless we have quasilinearity.

6. What happens with binary goods, when Q (or Qi) must be 0 or 1?

7. Can we add dynamics to our model? What if participants arrive and depart? How
might we reach a position with n participants? What if n is Poisson distributed?

8. There are other possible applications. We might consider network design problem with
fixed and variable capacity, or delay problem (in which participants declare their value
for delay and are charged appropriately).
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A Proof of Theorem 1 specialized to model of Section 1

Suppose that the optimal value is Φn and the problem can be solved by maximizing a La-
grangian with Lagrange multiplier λ̄. Then for λ̄ and all other λ we have

Φn = max
π1(·),...,πn(·),Q(·)

∫ [
n∑

i=1

πi(θ)(θi + λ̄g(θi))u(Q(θ)) − (1 + λ̄)c(n, Q(θ))

]
dFn(θ) (41)

≤ max
π1(·),...,πn(·),Q(·)

∫ [
n∑

i=1

πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n, Q(θ))

]
dFn(θ) (42)

We will show that the integral in (42) is bounded above by Φ̄n + o(n), where

Φ̄n = n · inf
λ

max
π1(·),Q

∫
[π1(θ1)(θ1 + λg(θ1))u(Q) − (1 + λ)c(n, Q)/n] dF (θ1) (43)

We will need that |π1(θ1)(θ1 + λg(θ1))u(Q)| is bounded for all θ1 and Q. This condition will
be satisfied, since π1(θ1) = 0 when θ1 + λg(θ1) < 0 (so it is here that we are relying on
the possibility of exclusion) and also θ1 + λg(θ1) is bounded above (by the assumption that
g is increasing and g(1) = 1). We will also need assumptions that u(Q) and c(n, Q)/n are
bounded.

It is also easy to see that Φn ≥ Φ̄n. Hence, we have Φ̄n ≤ Φn ≤ Φ̄n + o(n). Note that
Φ̄n is n times the optimal value obtained when solving the following problem, provided this
problem can be solved by maximizing a Lagrangian.

maximize
π1(·),Q

∫
[π1(θ1)θ1u(Q) − c(n, Q)/n] dF (θ1) (44)

subject to ∫
[π1(θ1)g(θ1)u(Q) − c(n, Q)/n] dF (θ1) ≥ 0 (45)

Note that this is a simple problem. It is just to choose θ̄ and Q to maximize

u(Q)
∫ 1

θ̄
θ1dF (θ1) − c(n, Q)/n

subject to
u(Q)θ̄(1 − F (θ̄)) − c(n, Q)/n ≥ 0

Let us now look at the proof of the bound. We prove the theorem when F is the uniform
distribution. It is notationally more elaborate, but routine, to prove the theorem for general
F .

Imagine dividing the interval [0, 1] into k equal parts, defining

Ii =
[
i − 1

k
,
i

k

)
, i = 1, . . . , k.

Let the random variable Xi be the number of the θ1, . . . , θn that are in Ii, Note that Xi has
a binomial distribution with mean n/k, and that by Chebyshev’s inequality we have

P (|Xi − n/k| > ε) ≤ n(1 − 1/k)(1/k)
ε2

12



We shall use this with ε = n2/3. Let us define the set S = {θ : |Xi − n/k| ≤ n2/3, for all i}.
Then

P (Sc) = P

(
⋃

i

{
|Xi − n/k| > n2/3

})
≤

∑

i

P
({

|Xi − n/k| > n2/3
})

≤ 1
n1/3

Then we have for (42)

max
π1(·),...,πn(·),Q(·)

∫ [
n∑

i=1

πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n, Q(θ))

]
dFn(θ) (46)

≤ max
π1(·),...,πn(·),Q(·)

∫

θ∈S

[
n∑

i=1

πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n, Q(θ))

]
dFn(θ) (47)

+ max
π1(·),...,πn(·),Q(·)

∫

θ �∈S

[
n∑

i=1

πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n, Q(θ))

]
dFn(θ) (48)

Since P (Sc) ≤ 1/n2/3 we can bound (48) by (1/n1/3)(nB) where B is an upper bound on
(θi + λg(θi))u(Q). We bound (47) by

max
π1(·),...,πn(·), Q(·)

∫

θ∈S

[
n∑

i=1

πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n, Q(θ))

]
dFn(θ) (49)

≤ max
π1,...,πn, Q, θ∈S

[
n∑

i=1

πi(θi + λg(θi))u(Q) − (1 + λ)c(n, Q)

]
(50)

= max
π1,...,πk, Q, θ∈S,

θ1∈I1,...,θk∈Ik

k∑

i=1

Xi[πi(θi + λg(θi))u(Q)] − (1 + λ)c(n, Q) (51)

≤ max
π1,...,πk, Q, θ∈S,

θ1∈I1,...,θk∈Ik

(n/k)
k∑

i=1

[πi(θi + λg(θi))u(Q)] +
k∑

i=1

|Xi − (n/k)|B′ − (1 + λ)c(n, Q) (52)

≤ max
π1,...,πk, Q,

θ1∈I1,...,θk∈Ik

(n/k)
k∑

i=1

[πi(θi + λg(θi))u(Q) − (1 + λ)c(n, Q)/n] + n2/3kB′ (53)

where B′ is a bound on |πi(θ)(θi + λg(θi))u(Q)|).
Given any ε > 0 we can choose k sufficiently large so that the intervals Ii have very small

widths, of 1/k, and so we can have (using continuity of f and approximation of an integral
by a Reimamm sum)

max
π1,...,πn, Q,

θ1∈I1,...,θk∈Ik

(1/k)
k∑

i=1

[πi(θi + λg(θi))u(Q) − (1 + λ)c(n, Q)/n]

≤ max
π1(·),Q

∫ 1

0
[π1(θ)(θ1 + λg(θ1))u(Q) − (1 + λ)c(n, Q)/n] dF (θ1) + ε/2

13



Note that this requires that the term in square brackets be Riemann integrable. I imagine
we will want Q restricted to an interval.

Given this k we can then choose n sufficiently large that n2/3B + n2/3kB′ is less than
nε/2. It follows, that given any ε > 0 it is possible to choose k sufficiently large and then n
sufficiently large to deduce that for n sufficiently large (but depending on λ),

max
π1(·),...,πn(·), Q(·)

∫ [
n∑

i=1

πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n, Q(θ))

]
dFn(θ)

≤ n max
π1(·), Q

∫
[πi(θ1)(θ1 + λg(θ1))u(Q) − (1 + λ)c(n, Q)/n] dF (θ1) + nε

By taking an infimum over λ on the right hand side, assuming the infimum is achieved for
some finite λ, we deduce Φn ≤ Φ̄n + o(n). Note that if the infimum were achieved only as
λ → ∞ then we could not make this conclusion.
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B Proof of Theorem 1 generalized to model of Section 3.4

Suppose that the optimal value is Φn and the problem can be solved by maximizing a La-
grangian with Lagrange multiplier λ̄. Then for λ̄ and all other λ we have

Φn = max
π1(·),...,πn(·),

Qi(·)

∫ [
n∑

i=1

πi(θ)(θi + λ̄g(θi))u(Qi(θ))

− (1 + λ̄)c
(
n,

∑
j πj(θ)Qj(θ)

)]
dFn(θ) (54)

≤ max
π1(·),...,πn(·),

Qi(·)

∫ [
n∑

i=1

πi(θ)(θi + λg(θi))u(Qi(θ))

− (1 + λ)c
(
n,

∑
j πj(θ)Qj(θ)

)]
dFn(θ) (55)

We will show that the integral in (42) is bounded above by Φ̄n + o(n), where

Φ̄n = n · inf
λ

max
π1(·),Q1(·)

∫ [
π1(θ1)(θ1 + λg(θ1))u(Q1(θ1))

− 1
n

(1 + λ)c
(

n, n

∫ 1

0
π1(θ′1)Q1(θ′1)dF (θ′1)

)]
dF (θ1) (56)

The proof follows the sames lines as before. We will need that |π1(θ1)(θ1 +λg(θ1))u(Q)| is
bounded for all θ1 and Q. This condition will be satisfied, since π1(θ1) = 0 when θ1+λg(θ1) <
0 (so it is here that we are relying on the possibility of exclusion) and also θ1 + λg(θ1) is
bounded above (by the assumption that g is increasing and g(1) = 1). We will also need
assumptions that u(Q) and c(n, Q)/n are bounded.

It is also easy to see that Φn ≥ Φ̄n. Hence, we have Φ̄n ≤ Φn ≤ Φ̄n + o(n). Note that
Φ̄n is n times the optimal value obtained when solving the following problem, provided this
problem can be solved by maximizing a Lagrangian.

maximize
π1(·),Q

∫ [
π1(θ1)θ1u(Q1(θ1) − 1

n
c

(
n, n

∫ 1

0
π1(θ′1)Q1(θ′1)dF (θ′1)

)]
dF (θ1) (57)

subject to
∫ [

π1(θ1)g(θ1)u(Q1(θ1) − 1
n

c

(
n, n

∫ 1

0
π1(θ′1)Q1(θ′1)dF (θ′1)

)]
dF (θ1) ≥ 0 (58)

Note that this is a simple problem. It is just to choose θ̄ and Q1(·) to maximize

∫ 1

θ̄
θ1u(Q1(θ1)dF (θ1) − 1

n
c

(
n, n

∫ 1

θ̄
Q1(θ′1)dF (θ′1)

)
(59)
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subject to ∫ 1

θ̄
g(θ1)u(Q1(θ1)dF (θ1) − 1

n
c

(
n, n

∫ 1

θ̄
Q1(θ′1)dF (θ′1)

)
≥ 0 (60)

Let us now look at the proof of the bound. We prove the theorem when F is the uniform
distribution. It is notationally more elaborate, but routine, to prove the theorem for general
F .

Imagine dividing the interval [0, 1] into k equal parts, defining

Ii =
[
i − 1

k
,
i

k

)
, i = 1, . . . , k.

Let the random variable Xi be the number of the θ1, . . . , θn that are in Ii, Note that Xi has
a binomial distribution with mean n/k, and that by Chebyshev’s inequality we have

P (|Xi − n/k| > ε) ≤ n(1 − 1/k)(1/k)
ε2

We shall use this with ε = n2/3. Let us define the set S = {θ : |Xi − n/k| ≤ n2/3, for all i}.
Then

P (Sc) = P

(
⋃

i

{
|Xi − n/k| > n2/3

})
≤

∑

i

P
({

|Xi − n/k| > n2/3
})

≤ 1
n1/3

Then we have for (42)

max
π1(·),...,πn(·),

Qi(·)

∫ [
n∑

i=1

πi(θ)(θi + λg(θi))u(Qi(θ))

− (1 + λ)c
(
n,

∑
j πj(θ)Qj(θ)

)]
dFn(θ) (61)

≤




max

π1(·),...,πn(·),
Qi(·)

∫

θ∈S
+ max

π1(·),...,πn(·),
Qi(·)

∫

θ �∈S





[
n∑

i=1

πi(θ)(θi + λg(θi))u(Qi(θ))

− (1 + λ)c
(
n,

∑
j πj(θ)Qj(θ)

)]
dFn(θ) (62)

Since P (Sc) ≤ 1/n2/3 we can bound the second of the maximums in (62) by (1/n1/3)(nB),
where B is an upper bound on (θi + λg(θi))u(Q). We then bound the first maximum in (62)
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by

max
π1,...,πn,

Q1,...,Qn, θ∈S

[
n∑

i=1

πi(θi + λg(θi))u(Qi) − (1 + λ)c
(
n,

∑
j πjQj

)]
(63)

= max
π1,...,πk,

Q1,...,Qk, θ∈S

[
k∑

i=1

Xiπi(θi + λg(θi))u(Qi) − (1 + λ)c
(
n,

∑k
j=1 πjXjQj

)]
(64)

≤ max
π1,...,πk,

Q1,...,Qk, θ∈S

[
k∑

i=1

(n/k)πi(θi + λg(θi))u(Qi) + |Xi − (n/k)|B′

− (1 + λ)c
(
n,

∑k
j=1 πj(n/k)Qj

)
+ |Xj − (n/k)|B′′

]
(65)

= n · max
π1,...,πk,

Q1,...,Qk, θ∈S

∫ [
π1(θ1)(θ1 + λg(θ1))u(Q1(θ1)

− (1 + λ)
1
n

c
(
n, n

∫ 1
0 πj(θ′1)Q1(θ′1)dF (θ′1)

)]
dF (θ1) + o(n) (66)

where B′ and B′′ are appropriate bounds and the last line follows by a Riemann sum approx-
imation of the sort we have made previously. By taking an infimum over λ on the right hand
side, assuming the infimum is achieved for some finite λ, we deduce Φn ≤ Φ̄n + o(n). Note
that if the infimum were achieved only as λ → ∞ then we could not make this conclusion.
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