

Euro-NF International Workshop on Traffic and Congestion Control for the Future Internet Volos, Greece, April 1st, 2011

A game-theoretic framework for ISPs' interactions in the context of Economic Traffic Management

Ioanna Papafili, George D. Stamoulis
Athens University of
Economics and Business

Sergios Soursos
Intracom Telecom S.A.

Outline

- Our context
- Economic Traffic Management
- Game-theoretic framework
- IoP Games
- Conclusions & future steps

The Internet Today: Players and Tussles

- Internet: A broad set of players (stakeholders) act simultaneously for the provision of each service
 - ISPs, application providers, content providers, users etc.
- Players can have *complementary* roles
 - In terms of resources and/or operations

and *conflicting* interests

- E.g. application providers desire high quality, which is costly to ISPs
- <u>Tussles</u> among players, who contend
 - Even they may engage in a common goal

Overlays & Information Asymmetry

Popular peer-to-peer (P2P) and other overlay applications;
 generate significant and increasing volumes of traffic

Information asymmetry

- The underlay does not take into account the ovelay requirements
- The overlays is built independently of the underlay network
- Conventional Traffic Engineering (TE) not suitable for overlay traffic, leads to traffic oscillations:
 - Higher costs for the ISP
 - Lower quality for application provider & users

The SmoothIT project Economic Traffic Management*

- Employs mechanisms based on the incentives of players
 - That are not contradictory to users' benefit but act complementary to the self-organization of the overlay
- Objective:
 - To bridge the information gap between overlay and underlay
 - To optimize overlay traffic mutually beneficially for all: ISP, user, application provider →"TripleWin"
- Under TripleWin the system operates in an equilibrium point
 - Traditional traffic optimization would aim at a global optimum of a single combined optimization metric
- An ETM mechanism is a means to enforce a desirable equilibrium

* The SmoothIT project: http://www.smoothit.org

Investigation of ISPs' interactions

- 1. ISP1 introduces an ETM mechanism
- 2. How should ISP2 respond?
 - Should ISP1 modify his action?

 Target: develop a unified game-theoretic framework to analyze ISP interactions and dynamic due to ETM

Game-theoretic framework

- ISPs are interacting, self-interested players
 - ISPs anticipate users' reactions
- ISP strategies involve application or not of an ETM mechanism and its possible variations
 - Locality awareness
 - Insertion of caches

Information Asymmetry

- Each ISP does not know the payoff matrix of his opponent(s)
 - Each player chooses his best response strategy given the strategy played by his opponent
 - Not a Stackelberg game

Definition of Two-level Game

- Multi-player, non-zero sum, two-metric
- To decide on an action the ISP should consider separately:
 - 1. performance (1st level), and
 - 2. cost (2nd level)
- Metrics compared to those of the previous state
- Combination of two metrics could allow actions that imply:
 - Significant cost reduction, along with performance deterioration
 - Lead to loss of customers and revenue

Decisions under the two-level metric ISP 2 ISP 2 No ETM **ETM** No ETM ETM No ETM No ETM ISP 1 ISP 1 ETM **ETM** ISP 2 ISP 2 No ETM **ETM** No ETM ETM No ETM No ETM **ISP 1 ISP 1** ETM **ETM** ISP 2 ISP 2 No ETM **ETM** No ETM ETM No ETM No ETM ISP 1 ISP₁ ETM **ETM**

Inter-domain Costs Payoff Matrices

ETM mechanism: Insertion of IoP(s)

ISP-owned Peer:

- Resourceful entity
- Acts as an overlay peer
- Controlled by the ISP
- Transparent & non-interceptive cache
- Exploits overlay self-organizing mechanism

Impact:

- Significant improvement of peers' performance
- Reduction of incoming traffic

• Innovation:

- Transparency, no interception required
- Variety of policies

IoP Game

- Objective: To study interactions of 2 neighboring ISPs who can deploy IoPs with or without policy
 - Strategies = {no loP, loP, loPUP}
 - IoPUP: insertion of IoP employing an Unchoking Policy;
 - UP dictates that remote peers are not served in seeding phase
- Payoff metrics quantified using the [LD+10] model* or simulations**
 - Performance → bandwidth demand or download time
 - ISP inter-domain cost → incoming inter-AS traffic volume

^{* [}LD+10] Lehrieder, Dan, Hossfeld, Oechsner, Singeorzan, The Impact of Caching on BitTorrent-like Peer-to-Peer Systems, IEEE P2P'10

^{**} SmoothITSimulator v3.0, http://protopeer.epfl.ch/wiki/BitTorrent_& ProtoPeer, http://protopeer.epfl.ch/index.html

Simulation Setup and Topology

Underlay:

Peers: 16384/1024 kbps

Original seeder: 10240 kbps up & down

IoPs: 40960 kbps up & down

Overlay:

150 MB file

 Mean inter-arrival time of leechers: 100 sec.

Mean seeding time: 600 sec.

Symmetric case: Simulation-based

- {noloP, noloP}, {noloP, loPUP}, {loPUP, noloP}: not feasible
- Step 1: AS2's first move leads to deterioration of AS1's cost
- Step 2: AS1's response aims at further improving cost

Asymmetric case: Model-based

- Step 2: AS2's response deteriorates both AS1's performance (and cost)
- Step 3: AS1 tries to improve its performance compared to Step 2, not to the beginning

Summary

- A game-theoretic framework for studying ISPs' interactions in the context of ETM
 - Users' reaction is anticipated
 - Two-level metric is used
- IoP game: results obtained by the theoretical model and simulations reveal similar dynamics for interacting ISPs
- Locality game also studied, using a new model
- Future work: formalize conditions for equilibria

Questions?

Thank you for your attention!

Thanks to all SmoothIT's project partners:

UZH, DOCOMO, TUD, AUEB, PrimeTel, AGH, ICOM, UniWue, TID

Back-up

Modeling background

- Qiu and Shrikant presented a fluid model in [QS08]
 - Study of inherent characteristics of BitTorrent
 - Steady-state analysis
 - Investigation of BitTorrent's incentive mechanism tit-for-tat
- Lehrieder *et al.* in [LD+10] extended [QS08] model to incorporate cache insertion information
 - Investigate the effects of caches on system's dynamics
 - Combination of the fluid model with a simple inter-AS traffic model

[QS08] Qiu, Shrikant, Modeling and Performance Analysis of BitTorrent-like Peer-to-Peer Networks, SIGCOMM'04

[LD+10] Lehrieder, Dan, Hossfeld, Oechsner, Singeorzan, The Impact of Caching on BitTorrent-like Peer-to-Peer Systems, IEEE P2P'10